[toc] 1. Towards Principled Methods for Training Generative Adversarial ...
[toc] 1. Unsupervised Representation Learning with Deep Convolutional Ge...
[toc] 1. InfoGAN: Interpretable Representation Learning by Information M...
[toc] 1. Maxout Networks arXiv:1302.4389 [stat.ML]tensorflow2代码:https://...
[toc] 1. Conditional Generative Adversarial Nets arXiv:1411.1784 [cs.LG]...
[toc] 1. Generative Adversarial Nets arXiv:1406.2661 [stat.ML]tensorflow...
朴素贝叶斯:基于概率论的分类方法 优点:在数据较少的情况下仍然有效,可以处理多类别问题。 缺点:对于输入数据的准备方式较为敏感。 适用数据类型:...
日期:2019.05.26参考:http://www.deeplearning.ai/ai-notes/initialization/ 神经网络...
决策树 正方形代表判断??椋╠ecision block),椭圆形代表终止??椋╰erminating block),表示已经得出结论,可以终止...