文章结构
1.内存管理的基本规则
2.autoreleasePool
3.ARC管理方法3.1 ARC 引入的四个ownership qualifiers
3.2 Property(属性)与ownership qualifier
4.防止内存泄漏编程注意事项
更新记录
一、内存管理的基本规则
在Objective-C的内存管理中,其实就是引用计数(reference count)的管理。内存管理就是在程序需要时程序员分配一段内存空间,而当使用完之后将它释放。如果程序员对内存资源使用不当,有时不仅会造成内存资源浪费,甚至会导致程序crach。我们将会从引用计数和内存管理规则等基本概念开始,然后讲述有哪些内存管理方法,最后注意有哪些常见内存问题。
1.1 引用计数(Reference Count)
为了解释引用计数,我们做一个类比:员工在办公室使用灯的情景。
- 当第一个人进入办公室时,他需要使用灯,于是开灯,引用计数为1
- 当另一个人进入办公室时,他也需要灯,引用计数为2;每当多一个人进入办公室时,引用计数加1
- 当有一个人离开办公室时,引用计数减1,当引用计数为0时,也就是最后一个人离开办公室时,他不再需要使用灯,关灯离开办公室。
形象点的可以这样解释,从底层的实现来讲就是一个class 结构体,结构体内部有个值(也就是下图所说的retain count
)记录了对象拥有者(ownship)的个数,当计数值为0时,系统将自动释放这个对象占用的内存空间。
1.2 内存管理基本规则
从上面员工在办公室使用灯的例子,我们对比一下灯的动作与Objective-C对象的动作有什么相似之处:
灯的动作 | Objective-C对象的动作 |
---|---|
开灯 | 创建一个对象并获取它的所有权(ownership) |
使用灯 | 获取对象的所有权 |
不使用灯 | 放弃对象的所有权 |
关灯 | 释放对象 |
因为我们是通过引用计数来管理灯,那么我们也可以通过引用计数来管理使用Objective-C对象。
而Objective-C对象的动作对应有哪些方法以及这些方法对引用计数有什么影响?
Objective-C对象的动作 | Objective-C对象的方法 |
---|---|
1. 创建一个对象并获取它的所有权 | alloc/new/copy/mutableCopy (RC = 1) |
2. 获取对象的所有权 | retain (RC + 1) |
3. 放弃对象的所有权 | release (RC - 1) |
4. 释放对象 | dealloc (RC = 0 ,此时会调用该方法) |
当你alloc
一个对象objc
,此时RC=1
;在某个地方你又retain
这个对象objc
,此时RC
加1,也就是RC=2
;由于调用alloc/retain
一次,对应需要调用release
一次来释放对象objc
,所以你需要release
对象objc
两次,此时RC=0
;而当RC=0
时,系统会自动调用dealloc
方法释放对象。
除了上面所说的alloc/new/copy/mutableCopy/retain
这几种方法可以获取对象的所有权(ownship)外,当对象被添加到集合对象(array, dictionary, set)中时,集合对象会获取集合中所有对象的所有权(RC+1
),当集合对象释放时,也会默认向集合中所有对象发送release
消息(RC -1)
,符合谁创建谁释放的原则。
注意下以下情况是不会获取对象的所有权的:
(1)不使用alloc/new/copy/mutableCopy
方法引用的对象将不会获取对象的拥有权
- (NSString *)fullName {
NSString *string = [NSString stringWithFormat:@"%@ %@",
self.firstName, self.lastName];
return string;
}
这个函数调用的是NSString
的 stringWithFormat
并不不满足内存管理基本原则,不会拥有对象的所有权,所以可以放心的返回。而不用调用release方法或者autorelease方法。
(2)引用对象指针的地址的方式(they take an argument of type ClassName ** or id *
),不会获取对象的拥有权。
这个比较好理解,比如我们常见的error。
NSString *fileName = <#Get a file name#>;
NSError *error;
NSString *string = [[NSString alloc] initWithContentsOfFile:fileName
encoding:NSUTF8StringEncoding error:&error];
if (string == nil) {
// Deal with error...
}
// ...
[string release];
二、 Autorelease Pool
在开发中,我们常常都会使用到局部变量,局部变量一个特点就是当它超过作用域时,就会自动释放。而autorelease pool跟局部变量类似,当执行代码超过autorelease pool块时,所有放在autorelease pool的对象都会自动调用release
。它的工作原理如下:
创建一个
NSAutoreleasePool
对象在autorelease pool块的对象调用
autorelease
方法释放
NSAutoreleasePool
对象
iOS 5/OS X Lion前的(等下会介绍引入ARC的写法)实例代码如下:
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
// put object into pool
id obj = [[NSObject alloc] init];
[obj autorelease];
[pool drain];
/* 超过autorelease pool作用域范围时,obj会自动调用release方法 */
由于放在autorelease pool的对象并不会马上释放,如果有大量图片数据放在这里的话,将会导致内存不足。
for (int i = 0; i < numberOfImages; i++)
{
/* 处理图片,例如加载
* 太多autoreleased objects存在
* 由于NSAutoreleasePool对象没有被释放
* 在某个时刻,会导致内存不足
*/
}
像上面这种情况你就可以这么写:
for (int i = 0; i < numberOfImages; i++)
{
@autoreleasepool {
/*
*这样临时的autoreleased objects就会在autoreleasepool 结束时释放达到最少的内存占用。
*/
}
}
二、 ARC管理方法
iOS/OS X内存管理方法有两种:手动引用计数(Manual Reference Counting
)和自动引用计数(Automatic Reference Counting
)。从OS X Lion和iOS 5开始,不再需要程序员手动调用retain
和release
方法来管理Objective-C
对象的内存,而是引入一种新的内存管理机制Automatic Reference Counting(ARC)
,简单来说,它让编译器
来代替程序员来自动加入retain
和release
方法来持有和放弃对象的所有权。
在ARC内存管理机制中,id和其他对象类型变量必须是以下四个ownership qualifiers其中一个来修饰:
- __strong(默认,如果不指定其他,编译器就默认加入)
- __weak
- __unsafe_unretained
- __autoreleasing
比方说下面这段程序
NSError *error;
BOOL OK = [myObject performOperationWithError:&error];
if (!OK) {
// Report the error.
// ...
开启ARC经过编译器处理后将会变成下面这样:
NSError * __strong error;
NSError * __autoreleasing tmp = error;
BOOL OK = [myObject performOperationWithError:&tmp];
error = tmp;
if (!OK) {
// Report the error.
// ...
接下来看几个例子:
2.1 __strong ownership qualifier
如果变量var被__strong修饰,当变量var指向某个对象objc,那么变量var持有某个对象objc的所有权
如果我想创建一个字符串,使用完之后将它释放调用,使用MRC管理内存的写法应该是这样:
{
NSString *text = [[NSString alloc] initWithFormat:@"Hello, world"]; //@"Hello, world"对象的RC=1
NSLog(@"%@", text);
[text release]; //@"Hello, world"对象的RC=0
}
而如果是使用ARC方式的话,就text对象无需调用release
方法,而是当text
变量超过作用域时,编译器来自动加入[text release]
方法来释放内存
{
NSString *text = [[NSString alloc] initWithFormat:@"Hello, world"]; //@"Hello, world"对象的RC=1
NSLog(@"%@", text);
}
/*
* 当text超过作用域时,@"Hello, world"对象会自动释放,RC=0
*/
而当你将text赋值给其他变量anotherText时,MRC需要retain一下来持有所有权,当text和anotherText使用完之后,各个调用release方法来释放。
{
NSString *text = [[NSString alloc] initWithFormat:@"Hello, world"]; //@"Hello, world"对象的RC=1
NSLog(@"%@", text);
NSString *anotherText = text; //@"Hello, world"对象的RC=1
[anotherText retain]; //@"Hello, world"对象的RC=2
NSLog(@"%@", anotherText);
[text release]; //@"Hello, world"对象的RC=1
[anotherText release]; //@"Hello, world"对象的RC=0
}
而使用ARC的话,并不需要调用retain和release方法来持有跟释放对象。
{
NSString *text = [[NSString alloc] initWithFormat:@"Hello, world"]; //@"Hello, world"对象的RC=1
NSLog(@"%@", text);
NSString *anotherText = text; //@"Hello, world"对象的RC=2
NSLog(@"%@", anotherText);
}
/*
* 当text和anotherText超过作用域时,会自动调用[text release]和[anotherText release]方法, @"Hello, world"对象的RC=0
*/
除了当__strong
变量超过作用域时,编译器会自动加入release
语句来释放内存,如果你将__strong
变量重新赋给它其他值,那么编译器也会自动加入release
语句来释放变量指向之前的对象。例如:
{
NSString *text = [[NSString alloc] initWithFormat:@"Hello, world"]; //@"Hello, world"对象的RC=1
NSString *anotherText = text; //@"Hello, world"对象的RC=2
NSString *anotherText = [[NSString alloc] initWithFormat:@"Sam Lau"]; // 由于anotherText对象引用另一个对象@"Sam Lau",那么就会自动调用[anotherText release]方法,使得@"Hello, world"对象的RC=1, @"Sam Lau"对象的RC=1
}
/*
* 当text和anotherText超过作用域时,会自动调用[text release]和[anotherText release]方法,
* @"Hello, world"对象的RC=0和@"Sam Lau"对象的RC=0
*/
前面已经提过内存管理的四条规则:
Objective-C对象的动作 | Objective-C对象的方法 |
---|---|
1. 创建一个对象并获取它的所有权 | alloc/new/copy/mutableCopy (RC = 1) |
2. 获取对象的所有权 | retain (RC + 1) |
3. 放弃对象的所有权 | release (RC - 1) |
4. 释放对象 | dealloc (RC = 0 ,此时会调用该方法) |
我们总结一下编译器是按以下方法来实现的:
- 对于规则1和规则2,是通过
__strong
变量来实现, - 对于规则3来说,当变量超过它的作用域或被赋值或成员变量被丢弃时就能实现
- 对于规则4,当
RC=0
时,系统就会自动调用
2.2 __weak ownership qualifier
其实编译器根据__strong
修饰符来管理对象内存。但是__strong
并不能解决引用循环(Reference Cycle)问题:对象A持有对象B,反过来,对象B持有对象A;这样会导致不能释放内存造成内存泄露问题。
举一个简单的例子,有一个类Test有个属性objc,有两个对象test1和test2的属性objc互相引用test1和test2:
@interface Test : NSObject
@property (strong, nonatomic) id objc;
@end
{
Test *test1 = [Test new]; /* 对象a */
/* test1有一个强引用到对象a */
Test *test2 = [Test new]; /* 对象b */
/* test2有一个强引用到对象b */
test1.objc = test2; /* 对象a的成员变量objc有一个强引用到对象b */
test2.objc = test1; /* 对象b的成员变量objc有一个强引用到对象a */
}
/* 当变量test1超过它作用域时,它指向a对象会自动release
* 当变量test2超过它作用域时,它指向b对象会自动release
*
* 此时,b对象的objc成员变量仍持有一个强引用到对象a
* 此时,a对象的objc成员变量仍持有一个强引用到对象b
* 于是发生内存泄露
*/
如何解决?于是我们引用一个__weakownership qualifier,被它修饰的变量都不持有对象的所有权,而且当变量指向的对象的RC为0时,变量设置为nil。例如:
__weak NSString *text = [[NSString alloc] initWithFormat:@"Sam Lau"];
NSLog(@"%@", text);
由于text变量被__weak修饰,text并不持有@"Sam Lau"对象的所有权,@"Sam Lau"对象一创建就马上被释放,并且编译器给出警告??,所以打印结果为(null)。
所以,针对刚才的引用循环问题,只需要将Test类的属性objc设置weak修饰符,那么就能解决。
@interface Test : NSObject
@property (weak, nonatomic) id objc;//修改成weak修饰符
@end
以及我们常用的block防止内存泄漏也可以使用__weak 修饰符,引用官方给的例子如下:
MyViewController *myController = [[MyViewController alloc] init…];
// ...
MyViewController * __weak weakMyController = myController;
myController.completionHandler = ^(NSInteger result) {
MyViewController *strongMyController = weakMyController;
if (strongMyController) {
// ...
[strongMyController dismissViewControllerAnimated:YES completion:nil];
// ...
}
else {
// Probably nothing...
}
};
2.3 __unsafe_unretained ownership qualifier
__unsafe_unretained ownership qualifier
,正如名字所示,它是不安全的。它跟__weak
相似,被它修饰的变量都不持有对象的所有权,但当变量指向的对象的RC
为0时,变量并不设置为ni
l,而是继续保存对象的地址;这样的话,对象有可能已经释放,但继续访问,就会造成非法访问(Invalid Access)。例子如下:
__unsafe_unretained id obj0 = nil;
{
id obj1 = [[NSObject alloc] init]; // 对象A
/* 由于obj1是强引用,所以obj1持有对象A的所有权,对象A的RC=1 */
obj0 = obj1;
/* 由于obj0是__unsafe_unretained,它不持有对象A的所有权,但能够引用它,对象A的RC=1 */
NSLog(@"A: %@", obj0);
}
/* 当obj1超过它的作用域时,它指向的对象A将会自动释放 */
NSLog(@"B: %@", obj0);
/* 由于obj0是__unsafe_unretained,当它指向的对象RC=0时,它会继续保存对象的地址,所以两个地址相同 */
打印结果是内存地址相同:
如果将__unsafe_unretained改为weak的话,两个打印结果将不同
__weak id obj0 = nil;
{
id obj1 = [[NSObject alloc] init]; // 对象A
/* 由于obj1是强引用,所以obj1持有对象A的所有权,对象A的RC=1 */
obj0 = obj1;
/* 由于obj0是__unsafe_unretained,它不持有对象A的所有权,但能够引用它,对象A的RC=1 */
NSLog(@"A: %@", obj0);
}
/* 当obj1超过它的作用域时,它指向的对象A将会自动释放 */
NSLog(@"B: %@", obj0);
/* 由于obj0是__weak, 当它指向的对象RC=0时,它会自动设置为nil,所以两个打印结果将不同*/
2.4 __autoreleasing ownership qualifier
引入ARC之后,让我们看看autorelease pool有哪些变化。没有ARC之前的写法如下:
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
// put object into pool
id obj = [[NSObject alloc] init];
[obj autorelease];
[pool drain];
/* 超过autorelease pool作用域范围时,obj会自动调用release方法 */
引入ARC之后,写法比之前更加简洁:
@autoreleasepool {
id __autoreleasing obj = [[NSObject alloc] init];
}
相比之前的创建、使用和释放NSAutoreleasePool
对象,现在你只需要将代码放在@autoreleasepool
块即可。你也不需要调用autorelease
方法了,只需要用__autoreleasing
修饰变量即可。
但是我们很少或基本上不使用
autorelease pool
。当我们使用XCode
创建工程后,有一个app
的入口文件main.m
使用了它:
int main(int argc, char * argv[]) {
@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
}
}
2.4 Property(属性)与ownership qualifier
有了ARC之后,新的property modifier也被引入到Objective-C类的property,例如:
@property (strong, nonatomic) NSString *text;
下面有张表来展示property modifier与ownership qualifier的对应关系
Property modifier | Ownership qualifier |
---|---|
strong | __strong |
retain | __strong |
copy | __strong |
weak | __weak |
assign | __unsafe_unretained |
unsafe_unretained | __unsafe_unretained |
我们先看下当我们命名一个属性为retain 时,然后调用@synthesize时编译器将会做什么。引用官方原文如下:
setter方法:
- (void)setCount:(NSNumber *)newCount {
[newCount retain];
[_count release];
// Make the new assignment.
_count = newCount;
}
也就是这里会首先retain新值,然后释放旧值(旧值RC -1),然后再赋值新值。
相同的当命名一个属性为copy类型时
setter方法:
- (void)setCount:(NSNumber *)newCount {
[_count release];
// Make the new assignment.
_count = [newCount copy];
}
retain与copy的区别在于,一个不产生新的对象只是对对象的RC + 1,另一个产生新的对象。
除了上面提到的属性修饰符外还有atomic (default)
、nonatomic
、readonly
、readwrite
。
只能一个线程访问,线程安全的(相当于线程锁的概念,一个时间段只有一个线程访问不容易出错,所以线程安全),低性能 等等
参考文章:
官方文档Advanced Memory Management Programming Guide
官方文档Transitioning to ARC Release Notes
官方文档Memory Management Programming Guide for Core Foundation
官方文档Transitioning to ARC Release Notes