Android Bitmap

Bitmap

1.Bitmap使用需要注意哪些问题?

  • 参考回答:
    • 要选择合适的图片规格(bitmap类型):通常我们优化Bitmap时,当需要做性能优化或者防止OOM,我们通常会使用RGB_565,因为ALPHA_8只有透明度,显示一般图片没有意义,Bitmap.Config.ARGB_4444显示图片不清楚,Bitmap.Config_ARGB_8888占用内存最多。
      • ALPHA_8每个像素占用1byte内存
      • ARGB_4444每个像素占用2byte内存
      • ARGB_8888每个像素占用4byte内存(默认)
      • ARGB_565每个像素占用2byte内存
    • 降低采样率:BitmapFactory.Options 参数inSampleSize的使用,先把option.inJustDecodeBounds设为true,只是去读取图片的大小,在拿到图片的大小之后和要显示的大小做比较通过calculateInSampleSize()函数计算inSampleSize的具体值,得到值之后。option.inJustDecodeBounds设为false读图片资源。
    • 复用内存:即通过软引用(内存不够的时候才会回收掉),复用内存块,不需要再重新给这个bitmap申请一块新的内存,避免了一次内存的分配和回收,从而改善运行效率。
    • 使用recycle()方法及时回收内存。
    • 压缩图片。

2、Bitmap.recycle()会立即回收么?什么时候会回收?如果没有地方使用这个Bitmap,为什么垃圾回收不会直接回收?

参考回答:

  • 通过源码可以了解到,加载Bitmap到内存里以后,是包含两部分内存区域的。简单的说,一部分是java部分的,一部分是C部分的。这个Bitmap对象是由Java部分分配的,不用的时候系统就会自动回收了。
  • 但是那个对应的C可用的内存区域,虚拟机是不能直接回收的,这个只能调用一下系统的垃圾回收器进行回收,调用System.gc()并不能保证立即开始进行回收过程,而只是为了加快回收的到来。

3、一张Bitmap所占用内存以及内存占用的计算

参考回答:

  • Bitmap所占内存大小 = 宽度像素 X (inTargetDensity / inDensity) X 高度像素 X (inTargetDensity / inDensity) X 一个像素所占的内存字节大小。
    • 注:这里inDensity表示图标图片的dpi(放在哪个资源文件下),inTargetDensity表示目标屏幕的dpi,所以你可以发现inDensity 和 inTargetDensity会对Bitmap的宽高进行拉伸,进而改变Bitmap占用内存大小。
    • 在Bitmap 里有两个获取内存占用大小的方法。
      • getByteCount(): API12 加入,代表存储Bitmap 的像素需要的最小内存。
      • getAllocationByteCount():API19 加入,代表在内存中为 Bitmap 分配的内存大小,代替了getByteCount()方法。
      • 在不复用Bitmap时,getByteCount()和getAllocationByteCount返回结果是一样的。在通过复用Bitmap来解码图片时,那么getByteCount()表示新解码图片占用内存的大小,getAllocationByteCount()表示被复用Bitmap真实占用内存的大小。

4.Android中缓存更新策略?

参考回答:

  • Android 的缓存更新策略没有统一的标准,一般来说,缓存策略主要包含缓存的添加、获取和删除这三类操作,但不管是内存缓存还是存储设备缓存,他们缓存容量是有限制的,因此删除一些旧缓存并添加新缓存,如何定义缓存的新旧就是一种策略,不同策略就对应不同的缓存算法。
  • 比如简单地根据文件的最后修改时间来定义缓存的新旧,当缓存满时就将最后修改时间较早的缓存移除,这就是一种缓存算法,但不算很完美。

5、LRU的原理?

参考回答:

  • 为减少流量消耗,可采用缓存策略。常用的缓存算法是LRU(least Recently Used):当缓存满时,会优先淘汰那些近期最少使用的缓存对象。主要是两种方式:
  • LruCache(内存缓存):LruCache类是一个线程安全的泛型类:内部采用一个LinkedHashMap以强引用的方式存储外界的缓存对象,并提供get和put方法来完成缓存的获取和添加操作,当缓存满时会移除早使用的缓存对象,再添加新的缓存对象。
  • DiskLruCache(磁盘缓存):通过将缓存对象写入文件系统从而实现缓存效果
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容