pytorch实现mnist手写数字识别(二)

训练神经网络

在上一部分中,我们建立的神经网络不是那么好,它对我们的手写数字一无所知。 神经网络的非线性激活函数工作方式类似于通用函数拟合。 有一些函数,可以将您的输入映射到输出。 例如,将手写数字图像分类的概率。 神经网络的强大之处,在于我们可以训练它们以逼近该F函数。只要给定任何具有足够数据和计算时间,就可以得到F函数,但这个函数可能非常复杂。

function_approx.png

起初,网络是无知的,它不知道将输入映射到输出函数。 我们将通过真实数据的示例来训练网络,然后调整网络参数以使其接近此F函数。

为了找到这些参数,我们需要通过网络预测实际输出。 为此,我们计算了损失函数(也称为成本),这是对我们的预测误差的度量。 例如,均方损失函数通常用于回归和二元分类问题:
\large \ell = \frac{1}{2n}\sum_i^n{\left(y_i - \hat{y}_i\right)^2}
其中n是训练示例的数量, y_i 是真实的标签,\hat {y} _i是预测的标签。

通过相对于网络参数,使这种损失最小化,我们可以找到损失最小且网络能够以高精度预测正确标签的参数。 我们使用梯度下降算法寻找最小值。 梯度是损失函数的斜率,指向变化最快的方向。 为了在最短的时间内达到最小,我们要遵循梯度(向下)。 您可以认为这就像通过沿着最陡峭的坡道下山。

gradient_descent.png

反向传播

对于单层网络,梯度下降很容易实现。 但是,对于像我们构建的那样的更深层次的多层神经网络来说,它要复杂得多。 如此复杂,以至于研究人员花了大约30年的时间才弄清楚如何训练多层网络。

训练多层网络是通过反向传播来完成的,反向传播实际上只是微积分中链式法则的一种应用。 如果将两层网络转换为图形表示,则最容易理解。

backprop_diagram.png

在网络的前向传播中,我们的数据和操作在这里从下到上。 我们输入x经过权重为W_1且偏置项为b_1的线性变换L_1。 然后,经过sigmoig函数操作S和另一个线性变换L_2。 最后,我们计算损失\ell。 我们使用损失函数来衡量网络预测的准确程度。 然后的目标是调整权重和偏差以使损失最小化。

为了训练梯度下降的权重,我们通过网络向后传播得到梯度。 每个操作在输入和输出之间都有一定的梯度。 在反向传播时,我们将输入的梯度乘以操作的梯度。 从数学上讲,这实际上只是使用链式法则计算损失函数的梯度。
\large \frac{\partial \ell}{\partial W_1} = \frac{\partial L_1}{\partial W_1} \frac{\partial S}{\partial L_1} \frac{\partial L_2}{\partial S} \frac{\partial \ell}{\partial L_2}
注意:我在这里省略了一些向量微积分知识。我们使用具有一定学习率 \alpha 的梯度更新权重。
\large W^\prime_1 = W_1 - \alpha \frac{\partial \ell}{\partial W_1}
设置学习率α,利用最小迭代次数使权重快速更新,以使得损失函数最小化。

损失函数

让我们开始看看如何使用PyTorch计算损失函数。 通过nn???,PyTorch提供了诸如交叉熵损失函数(nn.CrossEntropyLoss)。 您通?;峥吹剿鹗Х峙涓?criterion。 如上述所示,对于例如 MNIST 的分类问题,我们使用softmax函数预测类概率。 对于softmax输出,您想使用交叉熵作为损失函数。 要实际计算误差,先要定义标准 criterion,然后再传递网络输出和正确的标签。

这里要特别注意的重要事项。 查看the documentation for nn.CrossEntropyLoss的文档。

此条件将nn.LogSoftmax()nn.NLLLoss()组合在一个类中。

该输入应包含每个类的分数。

这意味着我们需要将网络的原始输出传递到损失函数中,而不是softmax函数中。 我们使用logits是因为softmax给您的概率通常非常接近零或一,但是浮点数不能准确地表示接近零或一。 最好避免使用概率进行计算,因此我们使用对数概率。

import torch
from torch import nn
import torch.nn.functional as F
from torchvision import datasets, transforms

# Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.5,), (0.5,)),
                              ])
# Download and load the training data
trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

注意:如果还不了解nn.Sequential,请看上一次的内容。

# Build a feed-forward network
model = nn.Sequential(nn.Linear(784, 128),
                      nn.ReLU(),
                      nn.Linear(128, 64),
                      nn.ReLU(),
                      nn.Linear(64, 10))

# Define the loss
criterion = nn.CrossEntropyLoss()

# Get our data
images, labels = next(iter(trainloader))
# Flatten images
images = images.view(images.shape[0], -1)

# Forward pass, get our logits
logits = model(images)
# Calculate the loss with the logits and the labels
loss = criterion(logits, labels)

print(loss)
tensor(2.3010, grad_fn=<NllLossBackward>)

根据经验,使用log-softmax(用nn.LogSoftmaxF.log_softmax函数)构建模型更为方便。 然后,您可以通过取指数torch.exp(output)来获得实际概率。 对于log-softmax输出,您要使用负对数似然损失nn.NLLLoss(文档)。

练习:建立一个返回log-softmax作为输出的模型,并使用负对数似然损失来计算损失。 请注意,对于nn.LogSoftmaxF.log_softmax,您需要适当地设置dim关键字参数。 dim = 0计算各行的softmax,因此每一列的总和为1,而dim = 1计算各列的总和,因此每一行的总和为1??悸且幌率涑鍪鞘裁?,并适当选择dim。

# TODO: Build a feed-forward network
model = nn.Sequential(nn.Linear(784,128),
                      nn.ReLU(),
                      nn.Linear(128,64),
                      nn.ReLU(),
                      nn.Linear(64,10),
                      nn.LogSoftmax(dim=1))

# TODO: Define the loss
criterion = nn.NLLLoss()

### Run this to check your work
# Get our data
images, labels = next(iter(trainloader))
# Flatten images
images = images.view(images.shape[0], -1)

# Forward pass, get our logits
logits = model(images)
# Calculate the loss with the logits and the labels
loss = criterion(logits, labels)

print(loss)
tensor(2.3090, grad_fn=<NllLossBackward>)

自动求梯度

现在我们知道了如何计算损失函数,如何使用它进行反向传播? Torch提供了一个autograd???,用于自动计算张量的梯度。 我们可以使用它来计算所有参数相对于损失函数的梯度。 Autograd的工作方式是跟踪张量上执行的操作,然后向后进行这些操作,并计算沿途的梯度。 为了确保PyTorch跟踪张量上的操作并计算梯度,你需要在张量上设置require_grad = True。 你可以在创建时使用require_grad关键字来执行此操作,也可以随时使用x.requires_grad_(True)来执行此操作。

你可以使用 torch.no_grad() 来关闭梯度的计算:

x = torch.zeros(1, requires_grad=True)
>>> with torch.no_grad():
...     y = x * 2
>>> y.requires_grad
False

另外,您可以使用torch.set_grad_enabled(True | False)来打开或关闭梯度。

使用z.backward()针对某些变量z计算梯度。 这会反向传播创建z的操作。

x = torch.randn(2,2, requires_grad=True)
print(x)
tensor([[-0.7619, -0.9604],
        [-0.6987,  1.2588]], requires_grad=True)
y = x**2
print(y)
tensor([[0.5805, 0.9223],
        [0.4882, 1.5845]], grad_fn=<PowBackward0>)

在下面我们可以看到创建y的操作,即幂操作PowBackward0

## grad_fn shows the function that generated this variable
print(y.grad_fn)
<PowBackward0 object at 0x000002AD868AD780>

autograd??榛岣僬庑┎僮鳎⑶抑廊绾渭扑忝扛鎏荻?。 通过这种方式,它可以针对任何一个张量计算一系列操作的梯度。 让我们将张量y变为标量,即取均值。

z = y.mean()
print(z)
tensor(0.8938, grad_fn=<MeanBackward0>)

请检查 xy 的梯度是否为空

print(x.grad)
None

要计算梯度,您需要在变量(例如z)上运行.backward方法。 这将计算z相对于x的梯度
\frac{\partial z}{\partial x} = \frac{\partial}{\partial x}\left[\frac{1}{n}\sum_i^n x_i^2\right] = \frac{x}{2}

z.backward()
print(x.grad)
print(x/2)
tensor([[-0.3809, -0.4802],
        [-0.3493,  0.6294]])
tensor([[-0.3809, -0.4802],
        [-0.3493,  0.6294]], grad_fn=<DivBackward0>)

这些梯度计算对于神经网络特别有用。 对于训练,我们需要相对于损失函数的梯度。 使用PyTorch,我们通过网络正向传播数据以计算损失,然后反向传播以计算相对于损失函数的梯度。 一旦有了梯度,就可以进行梯度下降步骤。

损失与梯度

当我们使用PyTorch创建网络时,所有参数都使用require_grad = True初始化。 这意味着当我们计算损失并调用loss.backward()时,将计算参数的梯度。 这些梯度用于通过梯度下降来更新权重。 在下面,您可以看到一个利用反向传播通过计算梯度的例子。

# Build a feed-forward network
model = nn.Sequential(nn.Linear(784, 128),
                      nn.ReLU(),
                      nn.Linear(128, 64),
                      nn.ReLU(),
                      nn.Linear(64, 10),
                      nn.LogSoftmax(dim=1))

criterion = nn.NLLLoss()
images, labels = next(iter(trainloader))
images = images.view(images.shape[0], -1)

logits = model(images)
loss = criterion(logits, labels)
print('Before backward pass: \n', model[0].weight.grad)

loss.backward()

print('After backward pass: \n', model[0].weight.grad)
Before backward pass: 
 None
After backward pass: 
 tensor([[ 0.0002,  0.0002,  0.0002,  ...,  0.0002,  0.0002,  0.0002],
        [ 0.0058,  0.0058,  0.0058,  ...,  0.0058,  0.0058,  0.0058],
        [-0.0002, -0.0002, -0.0002,  ..., -0.0002, -0.0002, -0.0002],
        ...,
        [ 0.0000,  0.0000,  0.0000,  ...,  0.0000,  0.0000,  0.0000],
        [-0.0012, -0.0012, -0.0012,  ..., -0.0012, -0.0012, -0.0012],
        [ 0.0024,  0.0024,  0.0024,  ...,  0.0024,  0.0024,  0.0024]])

训练神经网络

我们需要开始进行最后一步训练,这是一个优化器,我们将使用它使用梯度来更新权重。 我们是从PyTorch的optim中获得的。 例如,我们可以将随机梯度下降与optim.SGD一起使用。 您可以在下面查看如何定义优化器。

from torch import optim

# Optimizers require the parameters to optimize and a learning rate
optimizer = optim.SGD(model.parameters(), lr=0.01)

现在我们知道了如何使用所有各个部分,现在该看看它们如何协同工作。 在遍历所有数据之前,我们只考虑一个学习步骤。 PyTorch的一般过程:

  • 通过网络进行正向传播传递
  • 使用网络输出来计算损失
  • 使用loss.backward()通过网络进行反向传播以计算梯度
  • 使用优化器(随机梯度下降算法)更新权重

下面,我将进行一个训练步骤,并打印出权重和梯度,以便您查看其变化。 请注意,我有一行代码optimizer.zero_grad()。 当你使用相同的参数进行多次向后传递时,会导致梯度累积。 这意味着你需要在每次训练通过时将梯度归零,否则你将保留先前训练批次中的梯度。

print('Initial weights - ', model[0].weight)

images, labels = next(iter(trainloader))
images.resize_(64, 784)

# Clear the gradients, do this because gradients are accumulated
optimizer.zero_grad()

# Forward pass, then backward pass, then update weights
output = model(images)
loss = criterion(output, labels)
loss.backward()
print('Gradient -', model[0].weight.grad)
Initial weights -  Parameter containing:
tensor([[ 0.0310, -0.0118, -0.0347,  ..., -0.0017,  0.0066, -0.0122],
        [ 0.0007,  0.0074,  0.0232,  ..., -0.0357,  0.0227,  0.0052],
        [ 0.0121, -0.0286,  0.0265,  ...,  0.0174,  0.0127, -0.0132],
        ...,
        [ 0.0347,  0.0156,  0.0166,  ...,  0.0303, -0.0136,  0.0295],
        [-0.0146, -0.0036,  0.0253,  ..., -0.0104,  0.0069,  0.0213],
        [ 0.0028,  0.0031, -0.0184,  ..., -0.0025,  0.0256, -0.0037]],
       requires_grad=True)
Gradient - tensor([[ 0.0002,  0.0002,  0.0002,  ...,  0.0002,  0.0002,  0.0002],
        [-0.0004, -0.0004, -0.0004,  ..., -0.0004, -0.0004, -0.0004],
        [-0.0001, -0.0001, -0.0001,  ..., -0.0001, -0.0001, -0.0001],
        ...,
        [-0.0003, -0.0003, -0.0003,  ..., -0.0003, -0.0003, -0.0003],
        [-0.0002, -0.0002, -0.0002,  ..., -0.0002, -0.0002, -0.0002],
        [ 0.0013,  0.0013,  0.0013,  ...,  0.0013,  0.0013,  0.0013]])
# Take an update step and few the new weights
optimizer.step()
print('Updated weights - ', model[0].weight)
Updated weights -  Parameter containing:
tensor([[ 0.0310, -0.0118, -0.0347,  ..., -0.0017,  0.0066, -0.0122],
        [ 0.0007,  0.0074,  0.0232,  ..., -0.0357,  0.0227,  0.0052],
        [ 0.0121, -0.0286,  0.0265,  ...,  0.0174,  0.0127, -0.0132],
        ...,
        [ 0.0347,  0.0156,  0.0166,  ...,  0.0303, -0.0136,  0.0296],
        [-0.0146, -0.0035,  0.0253,  ..., -0.0104,  0.0069,  0.0213],
        [ 0.0028,  0.0031, -0.0184,  ..., -0.0025,  0.0256, -0.0037]],
       requires_grad=True)

真正训练神经网络

现在,我们将该算法放入循环中,以便可以遍历所有图像。 遍历整个数据集的过程称为epoch。 因此,在这里,我们将遍历Trainloader,以获取我们的训练批次。 对于每一批,我们将进行一次训练,计算损失,进行反向传播,并更新权重。

练习:我们利用神经网络进行训练。 如果过程没问题的化,则每个epoch的训练损失都会减少。

## Your solution here

model = nn.Sequential(nn.Linear(784, 128),
                      nn.ReLU(),
                      nn.Linear(128, 64),
                      nn.ReLU(),
                      nn.Linear(64, 10),
                      nn.LogSoftmax(dim=1))

criterion = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.003)

epochs = 10
for e in range(epochs):
    running_loss = 0
    for images, labels in trainloader:
        # Flatten MNIST images into a 784 long vector
        images = images.view(images.shape[0], -1)
    
        # TODO: Training pass
        optimizer.zero_grad()
        
        output = model(images)
        loss = criterion(output, labels)
        loss.backward()
        optimizer.step() 
        
        running_loss += loss.item()
    else:
        print(f"Training loss: {running_loss/len(trainloader)}")
Training loss: 1.9486986867654552
Training loss: 0.8663170544831738
Training loss: 0.5123799103917852
Training loss: 0.4224105821108259
Training loss: 0.38050861858419266
Training loss: 0.3551620597651264
Training loss: 0.33704469087662725
Training loss: 0.3233772503859453
Training loss: 0.31237514997755034
Training loss: 0.3026550426952112

经过训练的神经网络,我们可以查看它的预测。

%matplotlib inline
import helper

images, labels = next(iter(trainloader))

img = images[0].view(1, 784)
# Turn off gradients to speed up this part
with torch.no_grad():
    logps = model(img)

# Output of the network are log-probabilities, need to take exponential for probabilities
ps = torch.exp(logps)
helper.view_classify(img.view(1, 28, 28), ps)
output_31_0.png

现在,我们的网络非常出色。 它可以准确预测我们图像中的数字。

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容