回归(二):再论线性回归

机器学习中的“假设”问题

机器学习的本质是一个建模过程,所有理论都有出发点,也就是“假设”,那么这些假设有哪些特点呢?

  • 内涵性
    类似于宏观经济理论强调的“微观基础”,假设依据常理也应该是正确的。比如我们假设一个人的身高在[150cm,220cm]内,对于大多数情况该假设都是正确的。但要注意的一点是往往正确并不意味着永远正确

  • 简化性
    假设只要求接近真实,并非完全模拟真实,所以我们往往需要做若干简化。
    比如在数理统计中用泊松分布模拟站台人流量,认为每个人的滞留时间都是独立同分布的,但真实世界并非如此,这很明显就是一个简化。

  • 发散性
    我们在某种简化假设推导下得到的结论,不一定只有在假设成立时结论才成立。有时明显不正确的假设,但在实践中是work的。

![][equtation3]
[equtation3]: http://latex.codecogs.com/svg.latex?\hat{x}=(A{T}A){-1}A^{T}\bm
在实际工作中,若A^T*A不可逆或者防止过拟合,可以加入λ扰动。
![][equtation4]
[equtation4]: http://latex.codecogs.com/svg.latex?\hat{x}=(A{T}A+{\lambda}I){-1}A^{T}\bm

残差分析

由上文可知,我们可知得到最小二乘解的矩阵形式是:
那么什么叫过拟合或者欠拟合呢?回到线性回归方程,我们最后得到的结果为:
![][equtation5]
[equtation5]: http://latex.codecogs.com/svg.latex?b=A{\hat{x}}+\epsilon
以为是拟合是尽量还原样本间的内在逻辑,曲线并不会过每一个样本,体现在这个等式中就是最后一项,我们将之称为残差,围绕这一项的工作,我们称之为残差分析

对于残差项的分析,是分析模型合理性的重要指标。根据中心极限定理,在线性回归模型中,残差应满足白噪声假设(White Noise Condition):

  • 残差独立同分布(independent and identical distribution,iid),且无自相关性;
  • 残差和自变量X不相关;
  • 残差的均值为0,方差为常数。

在统计学中,白噪声随机序列是指一组无自相关性,且有相同分布的随机序列。理论上,白噪声假设不要求随机变量服从正态分布,而可以是任意分布。但基于中心极限定理,假设残差服从正态分布是一个合理的近似。
基于以上白噪声假设的第3条,当残差方差为常数时,我们称残差具有同方差性(homoscedasticity);当残差方差不是常数时,称残差具有异方差性(heteroscedasticity)。

可视化在残差分析中的重要性

著名的安斯库姆四重奏(Anscombe's quartet)展示了在线性回归模型中具有相同的统计特征,但数据分布明显不同的四个例子,用于说明线性回归建模前进行数据可视化分析的重要性:



我们除了关注数据是否存在明显的线性相关特征外,还需要观察离群值的数量。离群值和残差异方差性是紧密相关的概念。通常,如果一个数据点为离群值,同时也意味着它对应的残差具有较大的方差,因此数据中的离群值数量较多的话,残差一般也会出现明显的异方差性。

关于线性回归的离群值的判断,有两个要点:

  • 数据中存在少量的离群值是合理的。例如,当我们产生1000个服从标准正态分布的随机数,以距离均值大于两个标准差作为离群值判断标准,因为数据落在两个标准差之外的概率约为4.5%。此时如果我们去除这45个离群值来估计分布的方差,将会得到小于1的结论。因此,在删去离群值前应慎重考虑,除了因为存在少量离群值是合理的以外,离群值可能包含抽样或者数据的特征或者存在的问题。因此,如果数据中存在相当数量的离群值,应分析其成因,而非简单将其删去。

  • 线性回归离群值(regression outlier)是指对线性回归模型参数估计有强影响力的离群值(influential outlier)。只有当一个离群值具有高杠杆值(high leverage)且有明显的偏差(significant discrepancy)时,它才有可能是具有强影响力的。对于一元回归而言,只有当数据点出现在图的右下方时,它才有可能是有强影响力的。

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容