【机器学习】记录一些新的认识

  • 从最早接触机器学习到现在已经2年了,中间做过别的事情,也并没有很系统地学习过,因此本文用于记录一些我对机器学习的新认识,或者纠正之前认识的误区
  • 我用sklearn做机器学习,所以本文主要是记录我对sklearn的新认识,或纠正误区

关于超参和参数

  • 这是两个不同的概念
  • 参数:模型从训练集中自动习得的参数,例如y=kx+b中的k、b,是从训练集数据中拟合得的参数。
  • 超参:自己设定的参数,如随机森林中,树设置几棵、树的深度、树的特征数等。
  • 我们所说的调参、寻找最优参数,指的都是超参。

关于验证集

  • 验证集的作用是用于调超参。
  • 神经网络模型里,用验证集调参时,验证集的数据也被学习,所以当使用该验证集调参的次数多了之后,模型可能也会在验证集上过拟合。
  • 但在传统机器学习模型上(SVM/KNN/NB/RF/GBDT/LR/....),验证集充当“测试集”的作用,让模型在未被见过的数据上测试一下表现,人们通过观察其表现(如准确率)从而调整模型的超参。与神经网络模型不同的是,在这过程中,验证集的数据并没有被学习,只是用于“测试”。

关于random_state

  • random_state设置为具体数字可以使得结果可重复
  • 在所有有random_state设置的函数底下都需要设置!
  • 之前看到有书说可以在代码开头设置np.random.seed(32),能保证结果可重复,我试了,发现并不能保证每次得到相同结果,还是手动设置好每一个random_state靠谱!

StratifiedKFold的使用

  • StratifiedKFold是将数据集的正负样本按比例分配为n份(default=5)
  • 需要注意的是:返回的是n对已经结合好的训练集和测试集的index
    而不是一对
    也不是n份需要被手动结合的数据集
  • 但需要做的是从这些index里索引到训练集和测试集
from sklearn.model_selection import StratifiedKFold
skf=StratifiedKFold(n_splits=10, shuffle=True, random_state=32)
for train_index,test_index in skf.split(X,y):
  train_index=list(train_index)
  test_index=list(test_index)
  X_train, X_test = X.iloc[train_index], X.iloc[test_index]
  y_train, y_test = y.iloc[train_index], y.iloc[test_index]

参考:https://towardsdatascience.com/how-to-train-test-split-kfold-vs-stratifiedkfold-281767b93869

Pipeline和make_pipeline的区别

cross_val_score的理解

cross_val_score的使用

  • 本发现重要
  • 以前往往习惯将其参数cv设置为具体数值,如cv=5表示做5倍交叉验证
    现在发现这么做存在问题:无法确定这5个数据集是怎么划分的
    有可能他并不是按比例取正负样本的,也有可能没有做shuffle
  • 正确做法:用StratifiedKFold划分好后传入参数cv中
from sklearn.model_selection import cross_val_score, StratifiedKFold
skf=StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
scores=cross_val_score(estimator=pipe,X=X,y=y,cv=skf)
  • 用StratifiedKFold保证我先将数据集打乱,并且保证划分的5个数据集里正负样本所占的比例是一致的

StandardScaler

from sklearn.preprocessing import StandardScaler
df=pd.read_csv('example.csv')
scaled_features = StandardScaler().fit_transform(df.values)
scaled_features_df = pd.DataFrame(scaled_features, index=df.index, columns=df.columns)

GridSearchCV

  • GridSearchCV默认做5倍交叉验证
最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351