kafka数据丢失问题

数据丢失为大事,针对数据丢失的问题我们排查结果如下。
第一:是否存在数据丢失的问题?
存在,且已重现。

第二:是在什么地方丢失的数据,是否是YDB的问题?
数据丢失是在导入阶段,数据并没有写入到Kafka里面,所以YDB也就不会从Kafka里面消费到缺失的数据,数据丢失与延云YDB无关。

第三:是如何发现有数据丢失?
1.测试数据会一共创建365个分区,每个分区均是9亿数据,如果最终每个分区还是9亿(多一条少一条均不行),则数据完整。
2.测试开始第二天,开始有丢失数据的现象,且丢失的数据越来越多。

第四:如何定位到是写入端丢失数据的,而不是YDB消费丢失数据的?
kafka支持数据的重新回放的功能(换个消费group),我们清空了ydb的所有数据,重新用kafka回放了原先的数据。
如果是在ydb消费端丢失数据,那么第二遍回放数据的结果,跟第一次消费的数据在条数上肯定会有区别,完全一模一样的几率很低。
数据回放结果为:与第一次回放结果完全一样,可以确认为写入段丢失。

第五:写入kafka数据为什么会丢失?
导入数据我们采用的为kafka给的官方的默认示例,官方默认并没有处理网络负载很高或者磁盘很忙写入失败的情况(网上遇到同类问题的也很多)
一旦网络中断或者磁盘负载很高导致的写入失败,并没有自动重试重发消息。
而我们之前的测试,
第1次测试是在共享集群环境上做的测试,由于有其他任务的影响,网络与负载很不稳定,就会导致数据丢失。
第2次测试是在独立集群,并没有其他任务干预,但是我们导入程序与kafka不在一台机器上,而我们又没有做限速处理(每小时导入5亿条数据)
千兆网卡的流量常态在600~800M左右,如果此时突然又索引合并,瞬间的网络跑满是很正常的,丢包也是很正常的。
延云之前持续压了20多天,确实一条数据没有丢失,究其原因是导入程序与kafka在同一个机器上,且启用了限速。

第六:这个问题如何解决?
官方给出的默认示例并不可靠,并没有考虑到网络繁忙的情况,并不适合生产。
故kafka一定要配置上消息重试的机制,并且重试的时间间隔一定要长一些,默认1秒钟并不符合生产环境(网络中断时间有可能超过1秒)。
延云认为,增加如下参数会较大幅度的减少kafka写入数据照成的数据丢失,在公司实测,目前还没遇到数据丢失的情况。

    //producer用于压缩数据的压缩类型。默认是无压缩。正确的选项值是none、gzip、snappy。压缩最好用于批量处理,批量处理消息越多,压缩性能越好
     props.put("compression.type", "gzip");
     //增加延迟
     props.put("linger.ms", "50");
     //这意味着leader需要等待所有备份都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。这是最强的保证。,
     props.put("acks", "all");
     //设置大于0的值将使客户端重新发送任何数据,一旦这些数据发送失败。注意,这些重试与客户端接收到发送错误时的重试没有什么不同。允许重试将潜在的改变数据的顺序,如果这两个消息记录都是发送到同一个partition,则第一个消息失败第二个发送成功,则第二条消息会比第一条消息出现要早。
     props.put("retries ", 30);
     props.put("reconnect.backoff.ms ", 20000);
     props.put("retry.backoff.ms", 20000);
最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容