动手学习RAG: 向量模型

在世界百年未有之变局与个人自暴自弃的间隙中,我们学一点RAG。 RAG是一种独特的应用,“一周写demo,优化搞半年”,我甚至听说它能破解幻术。

为了理解其优化中的关键一环,我们先看下文本向量。文本向量除了是RAG检索的重要??橥?,也应用在信息检索、排序、分类、聚类、语义相似度中。

structure.png

1. 词向量到文本向量

向量模型把人类世界中的语言,变为计算机世界中的数字。输入一句话,输出一维向量。由于transformer中的一句话一般会输出一个二维向量,其形状为(sequence_length, embedding_dim),因此模型后面通常加一层pooling,把sequence_length这一维坍塌。

pip install open-retrievals
Screen Shot 2024-09-07 at 16.54.30.png

colab上有这段小小的代码: https://colab.research.google.com/drive/1dTzcMJNX3kSqqjTFUJXwZu6fRnf_5oHD?usp=sharing

更多更好的模型,根据语言需要(英文或中文还是多语言),顺着MTEB的榜单捋一下就行:https://huggingface.co/spaces/mteb/leaderboard

2. 文本向量的若干主流训练范式

语言模型可以很容易得到一个文本向量模型,但语言模型并不是为向量训练的,因此预训练的语言模型直接pooling不一定能取得满意的效果。那么,根据向量任务先微调一下再用。

微调的目的,把相似句子向量聚拢更近一些,把不相关的句子向量拉的更远一些。如何从一个语言模型训练出一个向量模型呢?我们从几篇典型论文中理解其范式。

BGE模型

  • 使用普通的文本语料进行RetroMAE预训练
  • 使用大量文本对进行batch内负样本对比学习
  • 使用高质量文本进行困难负样本加batch内负样本根据任务对比学习微调
Screen Shot 2024-09-07 at 15.34.00.png

GTE模型

  • 大量文本对进行batch内负样本对比学习
  • 高质量文本进行困难负样本学习
Screen Shot 2024-09-07 at 15.33.53.png

E5-mistral模型

  • 合成大量的不同任务不同语言的检索数据,困难负样本与batch内负样本对比学习
Screen Shot 2024-09-07 at 15.33.45.png

nv-embed模型

  • 高质量检索数据进行困难负样本加batch内负样本对比学习
  • 继续根据非检索数据,如一些分类等其他任务数据进行微调
Screen Shot 2024-09-07 at 15.33.18.png

3. 结论

我们试图从几种范式中总结出以下几点认知:

  • 训练方式,尤其是合理设计的多阶段pipeline仍然能够提升性能
  • 数据,数据大小、质量、多样性很重要,甚至更长的文本在向量模型中也更受重视。更重要的,合成数据开始展露头脚
  • 模型,Decoder-only LLM微调的向量模型效果越来越好。大模型也逐步统治向量模型榜单,带来的收益和增加的开销相比如何,咱也不知道,但是这些参数中蕴含的知识确实让人印象深刻
  • 对比学习和难负样本挖掘仍然扮演关键角色。
  • 多任务,用不同任务不同来源的数据进行训练,一个batch内如何组织数据也有优化空间。instruction-based fine-tuning可以在训练时帮助模型拿到任务上的线索

更多内容,请关注:https://github.com/LongxingTan/open-retrievals

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容