推荐系统理论(四) -- 利用标签数据进行推荐

本篇的思维导图如下:


1、UGC标签简介

标签应用一般分为两种:一种是让作者或者专家给物品打标签;另一种是让普通用户给物品打标签,也就是UGC(User Generated Content,用 户生成的内容)的标签应用。我们本篇主要讨论UGC的标签应用。

标签系统中的推荐问题主要有以下两个:
1)如何利用用户打标签的行为为其推荐物品(基于标签的推荐)?
2)如何在用户给物品打标签时为其推荐适合该物品的标签(标签推荐)?

本节,我们主要介绍基于标签的推荐问题

2、基于标签的推荐

2.1 一个最简单的算法

拿到了用户标签行为数据,相信大家都可以想到一个最简单的个性化推荐算法。这个算法的描述如下所示。
1)? 统计每个用户最常用的标签。
2)? 对于每个标签,统计被打过这个标签次数最多的物品。
3)? 对于一个用户,首先找到他常用的标签,然后找到具有这些标签的最热门物品推荐给这个用户。

对于上面的算法,用户u对物品i的兴趣公式如下:

这里,B(u)是用户u打过的标签集合,B(i)是物品i被打过的标签集合,nu,b是用户u打过标签b 的次数,nb,i是物品i被打过标签b的次数。

2.2 基于TFIDF的算法改进

前面这个公式倾向于给热门标签对应的热门物品很大的权重,因此会造成推荐热门的物品给 用户,从而降低推荐结果的新颖性。另外,这个公式利用用户的标签向量对用户兴趣建模,其中 每个标签都是用户使用过的标签,而标签的权重是用户使用该标签的次数。这种建模方法的缺点 是给热门标签过大的权重,从而不能反应用户个性化的兴趣。

因此我们可以从两个方面对上式进行修正:
1)首先,我们对热门标签进行一定的惩罚,得到下式:

这里,分母记录了标签b被多少个不同的用户使用过。

2)然后,我们还可以对热门物品进行惩罚:

这里,后面的分母记录了物品i被多少个不同的用户打过标签。

2.3 标签扩充

在前面的算法中,用户兴趣和物品的联系是通过 B(u) ∩? B(i) 中的标签建立的。但是,对于新用户或者新物品,这个集合( B(u) ∩? B(i) )中的标签数量会很少。为了提高推荐的准确率,我们 可能要对标签集合做扩展,比如若用户曾经用过“推荐系统”这个标签,我们可以将这个标签的 相似标签也加入到用户标签集合中,比如“个性化”、“协同过滤”等标签。
标签扩展的本质是对每个标签找到和它相似的标签,也就是计算标签之间的相似度。最简单的相似度可以是同义词。如果认为同一个物品上的不同标签具有某种相似度,那么当两个标签同时出现在很多物品的 标签集合中时,我们就可以认为这两个标签具有较大的相似度。对于标签b,令N(b)为有标签b的 物品的集合,n_{b,i}为给物品i打上标签b的用户数,我们可以通过如下余弦相似度公式计算标签 b和标签b'的相似度:

2.4 标签清理

标签需要清理主要有两个原因:
1)不是所有标签都能反应用户的兴趣
2)标签清理的另一个重要意义在于将标签作为推荐解释

标签清理的主要方法有:
1)去除词频很高的停止词
2)去除因词根不同造成的同义词
3)去除因分隔符造成的同义词

2.5 基于图的推荐算法

首先,我们需要将用户打标签的行为表示到一张图上。我们知道,图是由顶点、边和边上的 权重组成的。而在用户标签数据集上,有3种不同的元素,即用户、物品和标签。因此,我们需 要定义3种不同的顶点,即用户顶点、物品顶点和标签顶点。然后,如果我们得到一个表示用户u 给物品i打了标签b的用户标签行为(u,i,b),那么最自然的想法就是在图中增加3条边,首先需要在用户u对应的顶点v(u)和物品i对应的顶点v(i)之间增加一条边(如果这两个顶点已经有边相连,那 么就应该将边的权重加1),同理,在v(u)和v(b)之间需要增加一条边,v(i)和v(b)之间也需要边相连接。
下图是一个简单的用户—物品—标签图的例子。该图包含3个用户(A、B、C)、3个物品(a、 b、c)和3个标签(1、2、3)。在定义出用户—物品—标签图后,我们可以用基于随机游走的PersonalRank算法计算所有物品节点相对于当前用户节点在图上的相关性,然后按照相关性从大到小的排序,给用户推荐排名最高的N个物品。

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容