Sklearn Impute SimpleImputer 处理缺失值

Sklearn 有专门处理缺失值的???sklearn.impute.SimpleImputer,本文将探究如何用 Sklearn 中的预处理模块中的 Impute.SimpleImputer 处理缺失值。

一、模块介绍

官网详解在 part 6.4 Imputation of missing values:https://scikit-learn.org/stable/modules/impute.html

它包含四个重要参数:

二、示例应用

接下来将用实例来讲解如何使用填补缺失值:

1)数据来源及数据基本信息

import pandas as pd
import numpy as np
data=pd.read_csv("C:\\Users\\DRF\\Desktop\\tatanic\\datasets\\train.csv",index_col=0)
data.head()
data.info()

数据概要:实例使用的是泰坦尼克号数据集,查看数据集基本信息,发现Age、Cabin、Embarkde这三个字段均有数据缺失。其中Cabin缺失687条,Age缺失177条,Embarked缺少2条数据。下面示例应用将以填充数据集的[Age]字段为例。

2)缺失值处理应用

1、均值填充
age=data['Age'].values.reshape(-1,1)  #取出缺失值所在列的数值,sklearn当中特征矩阵必须是二维才能传入 使用reshape(-1,1)升维

from sklearn.impute import SimpleImputer #导入模块
imp_mean=SimpleImputer(missing_values=np.nan,strategy='mean')  #实例化,均值填充
imp_mean=imp_mean.fit_transform(age)     #fit_transform一步完成调取结果

data['Age']=imp_mean       #填充好的数据传回到 data['Age']列

data['Age'].isnull().sum() #检验是否还有空值,为0即说明空值均已被填充
2、中值填充
age=data['Age'].values.reshape(-1,1)         #取出缺失值所在列的数值,sklearn当中特征矩阵必须是二维才能传入 使用reshape(-1,1)升维

from sklearn.impute import SimpleImputer     #导入模块
imp_median=SimpleImputer(missing_values=np.nan,strategy='median')    #实例化,中值填充
imp_median=imp_median.fit_transform(age)     #fit_transform一步完成调取结果

data['Age']=imp_median       #填充好的数据传回到 data['Age']列

data['Age'].isnull().sum()   #检验是否还有空值,为0即说明空值均已被填充
3、众数填充
age=data['Age'].values.reshape(-1,1)  #取出缺失值所在列的数值,sklearn当中特征矩阵必须是二维才能传入 使用reshape(-1,1)升维

from sklearn.impute import SimpleImputer #导入模块
imp_most_frequent=SimpleImputer(missing_values=np.nan,strategy='most_frequent')  #实例化,众数填充
imp_most_frequent=imp_most_frequent.fit_transform(age)     #fit_transform一步完成调取结果

data['Age']=imp_most_frequent       #填充好的数据传回到 data['Age']列

data['Age'].isnull().sum()          #检验是否还有空值,为0即说明空值均已被填充
4、常数填充(填充0,填充1等常数)
age=data['Age'].values.reshape(-1,1)  #取出缺失值所在列的数值,sklearn当中特征矩阵必须是二维才能传入 使用reshape(-1,1)升维

from sklearn.impute import SimpleImputer       #导入模块
imp_0=SimpleImputer(missing_values=np.nan,strategy='constant',fill_value=0)  #实例化,填充常数0,填充常数需strategy与fill_value一同使用
imp_0=imp_0.fit_transform(age)     #fit_transform一步完成调取结果

data['Age']=imp_0                   #填充好的数据传回到 data['Age']列

data['Age'].isnull().sum()          #检验是否还有空值,为0即说明空值均已被填充
最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351