DEseq2差异表达分析

转录组数据绕不过差异分析。
为什么选择这两个包呢?
DEseq2针对有生物学重复的样本。(一般情况下应该是都需要生物学重复的)
edgeR对于单个样本是比较好的。(但是细胞材料真的没办法,细胞是又贵又难养。下一篇介绍。)
一、DEseq2差异表达分析
1、安装
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("DESeq2")
library(DESeq2)

2、准备数据
featureCounts定量后的数据,或者FPKM数据(下一遍讲如何获取FPKM)
定量后的数据的数据格式如下:


image.png

colData,其实就是表型数据。
格式如下


image.png

这里可以看到,control有两个重复,A有三个重复,B有三个重复。
如果想看不同重复之间的是否相似(PCA,热图都行),你可以不计算平均值。
重复之间如果很相似,那就求平均,如果有些特别离谱,就不要了。

3、计算差异基因

library(tidyverse)
library(DESeq2)
#载入定量后的数据
setwd("E:/4/")
mycounts <- read.table("07counts_matrix.txt", header=TRUE)

#如果重复之间需要就平均值,那就计算下均值。
mycounts$Control <- round((mycounts$control2.sorted.bam + mycounts$control3.sorted.bam)/2)
mycounts$A <- round((mycounts$A1.sorted.bam + mycounts$A2.sorted.bam + mycounts$A3.sorted.bam)/3)
mycounts$B <- round((mycounts$B1.sorted.bam + mycounts$B2.sorted.bam + mycounts$B3.sorted.bam)/3)
mycounts <- subset(mycounts, select=c(Geneid,Control,A,B))

#前面我输入的时候没有把ensemble名字修改成symble,所以这里就不需要。
#如果处理成名字之后的数据会存在重复,所以需要把重复的删掉。
rows <- rownames(unique(mycounts['Geneid']))
mycounts <- mycounts[rows,]

#这里有个Geneid,需要去除,先把第一列当作行名来处理
rownames(mycounts)<-mycounts[,1]
#把带Geneid的列删除
mycounts <- mycounts[,-1]
#head(mycounts)

#载入colData文件
colData <-read.csv("08counts_matrix_condition.csv")
#colData <- colData[1:5,]
#colData <- colData[c(1,2,6,7,8),]
#构建数据矩阵
dds <- DESeqDataSetFromMatrix(mycounts, colData, design= ~ condition)
dds <- DESeq(dds)

#接下来,我们要查看treatmentt VS control的总体结果,并根据p-value进行重新排序。
#利用summary命令统计显示一共多少个genes上调和下调(FDR0.1)
res <- results(dds, contrast=c("condition", "control", "treatment"))##或者res= results(dds)
res <- res[order(res$pvalue),]
summary(res)
#所有结果先进行输出
write.csv(res,file="DESeq2_results.csv")

#获取padj(p值经过多重校验校正后的值)小于0.05,表达倍数取以2为对数后大于1.5或者小于-1.5的差异表达基因。
#DS和PD都是合理的,所以选择1.5。
diff_gene_deseq2 <-subset(res, padj < 0.05 & abs(log2FoldChange) > 1.5) 
##或者diff_gene_deseq2 <-subset(res,padj < 0.05 & (log2FoldChange > 1.5 | log2FoldChange < -1.5))
dim(diff_gene_deseq2)
write.csv(diff_gene_deseq2,file= "DESeq2_diffExpression.csv")

####提取出你所需要的log2FoldChange和pvalue列。
diff_gene_deseq2 <- na.omit(diff_gene_deseq2)
###这里把需要的两行提取出来先,是log2FoldChange和padj
nrDEG <- diff_gene_deseq2[,c(2,6)]
View(nrDEG)
###然后换个名字即可。
colnames(nrDEG) <- c('log2FoldChange','pvalue')
View( nrDEG)
write.csv(nrDEG,file= "DESeq2_diffExpression_logFC.csv")

4、数据可视化
4.1、火山图
加载包

library(ggplot2)
library(ggrepel)
library(export)

上步骤得到了差异基因,赋值给一个新的参数。
之所以这么干,是因为我这边是两个分开写的脚本。

DEG <- res
dim(DEG)
#这里用的是DESeq2的DEG,删掉NA。
DEG <- na.omit(DEG)
dim(DEG)
# 使用基础函数plot绘图
plot(DEG$log2FoldChange,-log2(DEG$padj))
# 确定差异表达倍数,abs表示绝对值
logFC_cutoff <- with(DEG,mean(abs(log2FoldChange)) + 2*sd(abs(log2FoldChange)))
# 取前两位小数
logFC_cutoff <- round(logFC_cutoff, 2)
logFC_cutoff
查看一下logFC_cutoff的值。

# 确定上下调表达基因。
#方法1:按照logFC_cutoff绘图
#方法2:按照差异基因的log2FoldChange大于1.5或者其他值绘图。
DEG$change = as.factor(ifelse(DEG$padj < 0.05 & abs(DEG$log2FoldChange) > logFC_cutoff,
                        ifelse(DEG$log2FoldChange > logFC_cutoff ,'UP','DOWN'),'STABLE'))
                        
DEG$change = as.factor(ifelse(DEG$padj < 0.05 & abs(DEG$log2FoldChange) > 1.5,
                        ifelse(DEG$log2FoldChange > 1.5 ,'UP','DOWN'),'STABLE'))
 
##确定需要在火山图上展示的字。
#this_tile <- paste0('Cutoff for logFC is ',round(logFC_cutoff,2),
                    '\nThe number of up gene is ',nrow(DEG[DEG$change =='UP',]) ,
                    '\nThe number of down gene is ',nrow(DEG[DEG$change =='DOWN',]))
                    
#this_tile <- paste0('Cutoff for logFC is ',round(2.0,1),
                    '\nThe number of up gene is ',nrow(DEG[DEG$change =='UP',]) ,
                    '\nThe number of down gene is ',nrow(DEG[DEG$change =='DOWN',]))                    

###绘图的时候必须是dataframe,所以需要转换一下。
DEG <- data.frame(DEG)
## 颜色与分组一一对应
g <- ggplot(data=DEG, aes(x=log2FoldChange, y=-log10(padj),color=change)) + 
  geom_point(shape = 16, size=2) + 
  theme_set(theme_set(theme_bw(base_size=20))) + 
  xlab("log2 fold change") + 
  ylab("-log10 p-value") +
  ggtitle( this_tile ) + ##这个可以不要
  theme(plot.title = element_text(size=15,hjust = 0.5)) + 
  theme_classic()+
  scale_colour_manual(values = c('blue','black','red'))
graph2ppt(file="Volcano_Plot.ppt", width=10, aspectr=1)

4.2、热图
载入包

library(pheatmap)

载入数据

dat <- mycounts
###载入表型数据
View(colData$condition)
# 提取差异倍数
# 根据需要修改DEG的值
FC <- DEG$log2FoldChange
###根据FC筛选。
#FC <- subset(FC, abs(FC)>1)
#View(FC)
names(FC) <- rownames(DEG)
#View(FC)

# 排序差异倍数,提取前100和后100的基因名
#或者全部的基因名字
DEG_200 <- c(names(head(sort(FC),100)),names(tail(sort(FC),100)))
DEG_all <- c(names(sort(FC)))
###将筛选得到的基因,提取并进行标准化。
dat <- t(scale(t(dat[DEG_200,])))
dat <- t(scale(t(dat[DEG_all,])))
###针对不同数据集,求平均值
dat.fram <- data.frame(dat)
dat.fram$Control <- (dat.fram$control2.sorted.bam + dat.fram$control3.sorted.bam)/2
dat.fram$A <- (dat.fram$A1.sorted.bam + dat.fram$A2.sorted.bam + dat.fram$A3.sorted.bam)/3
dat.fram$B <- (dat.fram$B1.sorted.bam + dat.fram$B2.sorted.bam + dat.fram$B3.sorted.bam)/3
dat2 <- subset(dat.fram, select=c(Control,A,B))
#这里需要重新导入表型数据的名字。
colData <-read.csv("09counts_matrix_condition_mean.csv")
colData <- colData[1:2,]
colData <- colData[c(1,3),]
group <- data.frame(colData$condition)
rownames(group)=colnames(dat2)
#绘图
#show_colnames =T,show_rownames = F,cluster_cols = T这三个参数根据需要设置
#颜色根据需要设置colorRampPalette(c("green", "balck", "red"))
g2 <- pheatmap(dat2,show_colnames =T,show_rownames = F, cluster_cols = T,
         annotation_col=group,border=FALSE,
         color = colorRampPalette(c("navy", "white", "firebrick3"))(50))     
graph2ppt(file="pheatmap_cluster_mean.ppt", width=10, aspectr=1)
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容