python爬取豆瓣书评并词云展示

前言:

准备工具:python3.7、vscode、chrome

安装urllib、beautifulsoup、jieba、wordcloud(pip install 库)

一、分析豆瓣页面

首先我们先观察豆瓣的搜索页面

搜索页面
搜索页面url

我们可以看到左侧的导航栏,结合url我们会发现cat后面的值和q后面的书名电影名影响着搜索的变化,可以找出如下规律:

读书 1001

电影1002

音乐1003

我们查看网页的源代码(F12)可以发现我们所需要的内容全部都在a标签之下,我们利用豆瓣优秀的排序算法可以直接获取搜索排序的第一名作为我们的待爬取内容,我们也只需要其中的sid号,其余的事情就交给待爬取页面的爬虫去做了。

搜索页面源代码

下面给出源代码:

import ssl
import string
import urllib
import urllib.request
import urllib.parse

from bs4 import BeautifulSoup


def create_url(keyword: str, kind: str) -> str:
    '''
    Create url through keywords
    Args:
        keyword: the keyword you want to search
        kind: a string indicating the kind of search result
            type: 读书; num: 1001
            type: 电影; num: 1002
            type: 音乐; num: 1003
    Returns: url
    '''
    num = ''
    if kind == '读书':
        num = 1001
    elif kind == '电影':
        num = 1002
    elif kind == '音乐':
        num = 1003
    url = 'https://www.douban.com/search?cat=' + \
        str(num) + '&q=' + keyword
    return url


def get_html(url: str) -> str:
    '''send a request'''

    headers = {
        # 'Cookie': 你的cookie,
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36 OPR/26.0.1656.60',
        'Connection': 'keep-alive'
    }
    ssl._create_default_https_context = ssl._create_unverified_context

    s = urllib.parse.quote(url, safe=string.printable)  # safe表示可以忽略的部分
    req = urllib.request.Request(url=s, headers=headers)
    req = urllib.request.urlopen(req)
    content = req.read().decode('utf-8')
    return content


def get_content(keyword: str, kind: str) -> str:
    '''
    Create url through keywords
    Args:
        keyword: the keyword you want to search
        kind: a string indicating the kind of search result
            type: 读书; num: 1001
            type: 电影; num: 1002
            type: 音乐; num: 1003
    Returns: url
    '''
    url = create_url(keyword=keyword, kind=kind)
    html = get_html(url)
    # print(html)
    soup_content = BeautifulSoup(html, 'html.parser')
    contents = soup_content.find_all('h3', limit=1)
    result = str(contents[0])
    return result


def find_sid(raw_str: str) -> str:
    '''
    find sid in raw_str
    Args:
        raw_str: a html info string contains sid
    Returns:
        sid
    '''
    assert type(raw_str) == str, \
        '''the type of raw_str must be str'''
    start_index = raw_str.find('sid:')
    sid = raw_str[start_index + 5: start_index + 13]
    sid.strip(',')
    return sid


if __name__ == "__main__":
    raw_str = get_content('看见', '读书')
    print(find_sid(raw_str))

这样我们就有了具有唯一标实的图书(电影)的sid

其次我们先观察待爬取页面并查看网页源代码(F12)

待爬取页面
待爬取页面源代码

通过观察我们不难发现我们所需的评论都在<span class="short"> 标签下,想要爬取的作者、时间、推荐星级也分别藏在其他几个子标签下,代码如下:

comments = soupComment.findAll('span', 'short')

time = soupComment.select( '.comment-item > div > h3 > .comment-info > span:nth-of-type(2)')

name = soupComment.select('.comment-item > div > h3 > .comment-info > a')

第一页评论url:https://book.douban.com/subject/20427187/comments/hot?p=1

第二页评论url:https://book.douban.com/subject/20427187/comments/hot?p=2

...

第n页评论url:https://book.douban.com/subject/20427187/comments/hot?p=n

通过翻取评论,url的规律这样就找到了,只需要改变p后面的一个变量就可以

二、豆瓣评论数据抓取

我们需要为爬虫伪装一个头部信息防止网站的反爬虫

headers = {

        # 'Cookie': 你的cookie,

        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36 OPR/26.0.1656.60',

        'Referer': 'https: // movie.douban.com / subject / 20427187 / comments?status = P',

        'Connection': 'keep-alive'

    }

关于cookie你可以先在网页登陆你的豆瓣账号然后F12->network->all->heders中寻找

image

爬虫代码如下:

import urllib.request

import urllib.parse

from bs4 import BeautifulSoup

import time

import jieba

import wordcloud

import crawler_tools

def creat_url(num):

    urls = []

    for page in range(1, 20):

        url = 'https://book.douban.com/subject/' + \

            str(num)+'/comments/hot?p='+str(page)+''

        urls.append(url)

    print(urls)

    return urls

def get_html(urls):

    headers = {

        # 'Cookie': 你的cookie,

        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36 OPR/26.0.1656.60',

        'Connection': 'keep-alive'

    }

    for url in urls:

        print('正在爬?。?+url)

        req = urllib.request.Request(url=url, headers=headers)

        req = urllib.request.urlopen(req)

        content = req.read().decode('utf-8')

        time.sleep(10)

    return content

def get_comment(num):

    a = creat_url(num)

    html = get_html(a)

    soupComment = BeautifulSoup(html, 'html.parser')

    comments = soupComment.findAll('span', 'short')

    onePageComments = []

    for comment in comments:

        # print(comment.getText()+'\n')

        onePageComments.append(comment.getText()+'\n')

    print(onePageComments)

    f = open('数据.txt', 'a', encoding='utf-8')

    for sentence in onePageComments:

        f.write(sentence)

    f.close()

raw_str = crawler_tools.get_content('看见', '读书')

sid = crawler_tools.find_sid(raw_str)

print('sid:'+sid)

get_comment(sid)

三、数据清洗、特征提取及词云显示

首先利用jieba库分词,并使用其其库里内置的TFIDF算法对分词进行权重运算

然后利用wordcloud库生成词云,具体设置参数如下:

font_path='FZQiTi-S14S.TTF', # 设置字体

max_words=66, # 设置最大显示字数

max_font_size=600, # 设置字体最大值

random_state=666, # 设置随机生成状态

width=1400, height=900, # 设置图像大小

background_color='black', # 设置背景大小

stopwords=(type(list)) # 设置停用辞典

我们把做了数据处理的词云和普通词云做个对比:

为处理
处理过

数据处理代码如下:

import jieba

import jieba.analyse

import wordcloud

f = open('/Users/money666/Desktop/The_new_crawler/看见.txt',

        'r', encoding='utf-8')

contents = f.read()

f.close()

stopWords_dic = open(

    '/Users/money666/Desktop/stopwords.txt', 'r', encoding='gb18030')    # 从文件中读入停用词

stopWords_content = stopWords_dic.read()

stopWords_list = stopWords_content.splitlines()    # 转为list备用

stopWords_dic.close()

keywords = jieba.analyse.extract_tags(

    contents, topK=75, withWeight=False,)

print(keywords)

w = wordcloud.WordCloud(background_color="black",

                        font_path='/Users/money666/Desktop/字体/粗黑.TTF',

                        width=1400, height=900, stopwords=stopWords_list)

txt = ' '.join(keywords)

w.generate(txt)

w.to_file("/Users/money666/Desktop/The_new_crawler/看见.png")

四、问题及解决办法

1、pip timeout

一、创建或修改pip.conf配置文件:

$ sudo vi ~/.pip/pip.config

timeout =500 #设置pip超时时间

二、使用国内镜像

使用镜像来替代原来的官网,方法如下:

1. pip install redis -i https://pypi.douban.com/simple

-i:指定镜像地址

2. 创建或修改pip.conf配置文件指定镜像地址:

[global]

timeout =6000

index-url = http://pypi.douban.com/simple/

[install]

use-mirrors =true

mirrors = http://pypi.douban.com/simple/

trusted-host = pypi.douban.com

补充:可以在多个路径下找到pip.conf,没有则创建,另外,还可以通过环境变量Linux*:/etc/pip.conf *

*~/.pip/pip.conf *

*~/.config/pip/pip.conf *

Windows: %APPDATA%\pip\pip.ini

  • %HOME%\pip\pip.ini *

C:\Documents and Settings\All Users\Application Data\PyPA\pip\pip.conf (Windows XP)

  • C:\ProgramData\PyPA\pip\pip.conf (Windows 7及以后)*

Mac OSX*: ~/Library/Application Support/pip/pip.conf *

*~/.pip/pip.conf *

*/Library/Application Support/pip/pip.conf *

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容