用 Python 描述一条简单的区块链

关键词:Consensus Algorithm、Proof of Work(PoW)
参考文章:https://hackernoon.com/learn-blockchains-by-building-one-117428612f46
(网上已有中文翻译,本文只是要点概括)

一个想象的场景

前几天我在一条药品链上买了盒感冒药??,产生了一笔交易记录,上面记录着:是我付的款,人民医院收的钱,还有药品金额,嗯,存下药品信息也不错。

区块链会把这笔交易先记录下来,等待其它计算节点(矿工)帮忙把交易记录写入区块(在等人挖矿啦),等矿工把生成区块所需的物品(算法生成的值)准备好后,就把记录都写入区块,这时候链上就多了一个区块,记录了一些交易信息。当然了,矿工不能白干啊,不然给你闹罢工,系统就奖励矿工一张优惠券,并告诉他,通过我们买??,买一送一。

我回家吃了好几天药,感冒也没见好,怎么回事呢?上网一查发现,哎呀,吃错药了,医院能不能赔?我拿什么证明呢?这时候到链上一查,给丫区块一特写,药品信息、交易时间、收款人、付款人样样俱全,不赔不行啊。(当然了,药品交易有没有必要使用区块链技术呢?也是个值得思考的问题。)

背后的技术

我在阅读了不少入门介绍后,依然觉得理解不够清晰,本着数据结构和算法一定要手动验证的精神,我也手动验证了一条简单的区块链。如果对区块链还没有建立起基础认识,可以读些有趣的科普文章。

在我们建立一条区块链之前,可先回想复习一下Linked List 链表或者顺序存储数组,我们会用 Python 的 list 数据结构来存储区块 block。

区块链给我们带来了"更安全"更透明的一种生活方式,每笔「交易」最终都会被记录进区块,由于链上区块的设计巧妙,可验证,不少人都开始探索它的使用场景,当然了,目前最多还是聚焦在金融领域 ......

区块是如何做到高安全性的呢?

首先每条链都会引入一个创世区块,创世区块带有交易的时间和相关信息,此外还包含一个证明 proof字段,这是该链的拥有者定义的,用来证明区块的身份,还包含一个previous hash字段,用来验证上一个区块的身份,由于创世区块之前没有区块了,所以它的previous hash没什么 x 用。但是,之后的区块都可以根据proofprevious hash来验证,由于生成这两个值的算法难以破解,所以安全性比较高。

少啰嗦,直接看代码

class Blockchain(object):
    # 初始化我们的链
    def __init__(self):
        # 所有生成的区块都存着这条链里
        self.chain = []
        # 当前所有交易记录,将被写进新生成的区块里
        self.current_transactions = []

        # 你好,我是创世区块
        self.new_block(previous_hash=1, proof=100)

    def new_block(self, proof, previous_hash=None):
        block = {
            'index': len(self.chain) + 1,
            'timestamp': time(),
            'transactions': self.current_transactions,
            'proof': proof,
            'previous_hash': previous_hash or self.hash(self.last_block),
        }

        self.current_transactions = []

        self.chain.append(block)
        return block

    def new_transaction(self, sender, recipient, amount):
        self.current_transactions.append({
            'sender': sender,
            'recipient': recipient,
            'amount': amount,
        })

        return self.last_block['index'] + 1

    @staticmethod
    def hash(block):
        block_string = json.dumps(block, sort_keys=True).encode()
        return hashlib.sha256(block_string).hexdigest()

    @property
    def last_block(self):
        return self.chain[-1]

    def proof_of_work(self, last_proof):
        proof = 0

        while not self.valid_proof(last_proof, proof):
            proof += 1

        return proof

    def valid_proof(self, last_proof, proof):
        guess = f'{last_proof}{proof}'.encode()
        guess_hash = hashlib.sha256(guess).hexdigest()
        return guess_hash[-1] == "0"

我们提供了初始化一条链的方法,并且提供了产生交易记录的函数,产生区块的函数。hash&proof_of_work都是为区块的身份验证提供服务的,有了它们才能保证每个区块的身份以及它和前一个区块的关联性。当我们能验证每个区块都和前一个区块关系正常时,整条链就正常了。

常说的分布式计算是什么?

你可能听说过区块链是去中心化的,是分布式的,这到底是什么意思?

我们的一个个矿工,其实就是一个个计算节点,他们为区块链提供计算服务,生成新区块所需要的巨大运算都交由他们执行,这叫分布式计算,充分利用了闲散的算力,也充分带动了一波显卡销售 ^ _ ^

但这也带来了一个问题,这么多个计算节点,我们怎么保证最终的结果一致呢?如果我挖到一张优惠券,你挖到两张优惠券,我们这条链岂不是就乱了?这时候就要看共识算法 Consensus Algorithm了,用它来确保所有节点的链都一致,确确实实是一条链,不是 fork 出去的兄弟。我们来拓展上面的代码。

class Blockchain(object):
    def __init__(self):
        .....
        self.nodes = set()
        .....

    .....

    def register_node(self, address):
        parsed_url = urlparse(address)
        self.nodes.add(parsed_url.netloc)

    def valid_chain(self, chain):
        last_block = chain[0]
        current_index = 1

        while current_index < len(chain):
            block = chain[current_index]
            print(f'{last_block}')
            print(f'{block}')
            print("\n-----------\n")

            if block['previous_hash'] != self.hash(last_block):
                return False

            if not self.valid_proof(last_block['proof'], block['proof']):
                return False

            last_block = block
            current_index += 1

        return True

    def resolve_conflicts(self):
        neighbours = self.nodes
        new_chain = None

        max_length = len(self.chain)
        for node in neighbours:
            response = requests.get(f'http://{node}/chain')

            if response.status_code == 200:
                length = response.json()['length']
                chain = response.json()['chain']
                if length > max_length and self.valid_chain(chain):
                    max_length = length
                    new_chain = chain

        if new_chain:
            self.chain = new_chain
            return True

        return False

现在我们提供了增加计算节点的函数,也提供了检验链的函数,更重要的是,我们引入了解决链不一致的方法resolve_conflicts,有了它,我们就可以确保这么多个计算节点拥有的链都一致啦。

具体的思想是这样的:我们在链上记录了所有计算节点的位置,当我们想获得链的最新状态时,就去轮询节点,挨个问:“你的链多长,有几个区块?咱们比比?”,这样一轮下来,如果我们发现有的链比我们的更长,那么这条更长的链就是最新且正确的,我们把它拿过来,更新成我们的链,这样就一致了。

当然了,就算是看到这里你可能还是会有不少疑惑,比如说:

  • 为什么长的就最新且最正确?
  • 如果 A 节点生成了两个区块,B 节点也生成了两个区块,这时候去同步链会怎么样?
  • 什么时候该去同步链?

嗯,写到这里发现自己其实还有很多的疑惑,动手再检验一下吧!

原作者的代码:
https://github.com/dvf/blockchain
我的代码:
https://github.com/helsonxiao/learn-blockchain

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容