使用反向传播训练多层感知器的原理

关键词:反向传播,backprop,多层感知器(MLP)

本文是一篇译文。

原文来源:http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

本文介绍使用反向传播训练多层感知器的原理。这里使用包含两个输入和一个输出的三层神经网络说明训练过程,如下图所示:

img01.gif

每个神经元由两个单元组成。第一个单元对权重系数和输入信号的乘积进行加和。第二个单元实现非线性功能,称为神经元激活函数。信号 e 为第一单元输出信号,y=f(e) 为非线性单元输出信号。信号 y 也是神经元的输出信号。

img01b.gif

我们需要训练数据集来训练神经网络。训练数据集包括输入信号(x1 和 x2)及对应的目标(期望输出)y。神经网络训练是一个迭代过程。每次迭代过程都将使用训练集的新数据修改节点的权重。修改节点权重使用的算法为:每次训练都从训练集的两个输入信号开始;完成这一步之后,我们可以确定每个网络层的每个神经元的输出。下图说明了信号如何在网络中传播,符号 w_{(xm)n} 表示网络输入 x_m与输入层的神经元 n 之间连接的权重。符号 y_n表示神经元n的输出信号。

img02.gif

img03.gif

img04.gif

隐藏层的信号传播,符号w_{mn}表示神经元 m 的输出与下一层神经元 n 的输入的连接的权重:

img05.gif

img06.gif

输出层的信号传播:

img07.gif

下一个算法步骤中,网络信号 y 期望的输出值(训练集中的目标)进行比较。这两个值的差称为输出层神经网络的误差信号 d 。

img08.gif

由于不知道内层神经元的输出值,我们无法计算内层神经元的误差信号。训练多层神经网络的有效方法在很多年都是个未解之谜。直到 80 年代中期才有了反向传播算法。反向传播算法的思想是将误差信号 d 反向传入所有神经元,上面过程中神经元的输出变成了输入。

img09.gif
img10.gif

反向传输信号的权重系数 w_{mn}与计算输出的权重的值是一样的,只是数据流的方向发生了变化(信号由输出依次传向输入)。将其应用到所有网络层。如下图所示:

img11.gif

img12.gif
img13.gif

计算完每个神经元的误差信号后,每个神经元的权重系数将发生变化。下面的公式中df(e)/de表示神经激活函数的导数(权重将发生变化)。

img14.gif

img15.gif
img16.gif
img17.gif
img18.gif
img19.gif

系数 \eta影响网络训练速度。有几种技术可以用于确定这个系数。第一种方法使用很大的值作为系数开始学习,在建立权重系数的同时缩小系数。第二种方法(更复杂)使用较小的值作为系数开始学习,在学习过程中,开始时增大系数,当慢慢接近结果时减少系数。使用较小的系数的训练过程有助于确定权重系数的正负。

参考:

Ryszard Tadeusiewcz "Sieci neuronowe", Kraków 1992

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容

  • 此时此刻,觉得自己快要被自己整疯了。因为心里有太多的秘密无处诉说,太多的事情堆积在胸口,压得我喘不过气来。...
    恋上古丁香阅读 341评论 0 0
  • 说到问题儿童,我想大家或多或少都存在各种各样的烦恼,在过去的一年里,陆陆续续有妈妈会来跟我咨询一些有关宝宝的问题。...
    多美麻麻阅读 956评论 0 1
  • 各种插件的集合:awesome-vue 各种插件的集合,需要的时候可以过来找找,不过需要注意是否支持vue2 数据...
    momomin阅读 1,743评论 0 1