谷歌云数据工程师考试 - Bigtable复习笔记

Bigtable Summary

What is?
-> more expensive because you pay for the number of nodes that you are using
-> if 10 nodes, 100,000 queries per second with 6 millisecond latency
-> low latency
-> high throughput -> fast
-> structured data
-> NOT transactional
-> NOT SQL
-> global availability
-> durable, replicated, and you can get access to it

Screen Shot 2018-06-27 at 1.37.00 pm.png

[图片上传中...(Screen Shot 2018-06-26 at 11.04.42 am.png-5ada72-1532174291870-0)]

Serverless?
No

Benefits

  • Incredible scalability. Cloud Bigtable scales in direct proportion to the number of machines in your cluster. A self-managed HBase installation has a design bottleneck that limits the performance after a certain QPS is reached. Cloud Bigtable does not have this bottleneck, and so you can scale your cluster up to handle more queries.
  • Simple administration. Cloud Bigtable handles upgrades and restarts transparently, and it automatically maintains high data durability. To replicate your data, simply add a second cluster to your instance, and replication starts automatically. No more managing masters or regions; just design your table schemas, and Cloud Bigtable will handle the rest for you.
  • Cluster resizing without downtime. You can increase the size of a Cloud Bigtable cluster for a few hours to handle a large load, then reduce the cluster's size again—all without any downtime. After you change a cluster's size, it typically takes just a few minutes under load for Cloud Bigtable to balance performance across all of the nodes in your cluster.

What good for?
Storing time-series data in Cloud Bigtable is a natural fit

  • Time-series data, such as CPU and memory usage over time for multiple servers.
  • Marketing data, such as purchase histories and customer preferences.
  • Financial data, such as transaction histories, stock prices, and currency exchange rates.
  • Internet of Things data, such as usage reports from energy meters and home appliances.
  • Graph data, such as information about how users are connected to one another.

How to use?

cbt

  • a command-line interface for performing several different operations on Cloud Bigtable.

HBase shell

  • HBase shell to connect to a Cloud Bigtable instance, perform basic administrative tasks, and read and write data in a table

Indexing
-> can only be indexed by row key. none of other columns can be indexed

Design
As a summary:

Get a balance between:
Distribute the reading load between tablets (you don’t want reading to be to only one tablet)
AND
Distribute the writing load between tablets (you don’t want writing to be to only one tablet)
AND
Design a row key to allow common queries to return consecutive rows

先看要query的东西在不在key里

然后看key有没有以下东西,避免hotspotting

Avoid using a row key that’s a domain or starts with a domain (can be part of domain though)

-> because certain domains are extremely active than others

-> the tablets corresponding to those customers are going to cause hot spotting

Avoid using User ID as row key if user IDs are sequentially assigned

-> it is OK if your user ID is randomly assigned e.g. by a hash code

-> because in many applications, newer users are going to be more active than users that were created 6-7 years ago

-> so if the User IDs are assigned in sequential order, the tablets that correspond to new users will tend to be more active -> hots potting

Avoid using a static identifier as a key, especially if you have a static identifier that’s going to keep getting used

-> if you have row key that’s mem usage or CPU usage or disk usage and you keep updating them over and over again, those nodes that do processing for these constantly updated data will get overworked

Avoid using dates as most writes will have the latest dates, thus same tablets -> hot spotting

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容