redis这几个常用的场景,你都知道吗?

1、缓存

String类型

例如:热点数据缓存(例如报表、明星出轨),对象缓存、全页缓存、可以提升热点数据的访问数据。

2、数据共享分布式

String 类型,因为 Redis 是分布式的独立服务,可以在多个应用之间共享

例如:分布式Session

<dependency> 
    <groupId>org.springframework.session</groupId> 
    <artifactId>spring-session-data-redis</artifactId> 
</dependency>

3、分布式锁

String 类型setnx方法,只有不存在时才能添加成功,返回true

public static boolean getLock(String key) {
    Long flag = jedis.setnx(key, "1");
    if (flag == 1) {
        jedis.expire(key, 10);
    }
    return flag == 1;
}

public static void releaseLock(String key) {
    jedis.del(key);
}

4、全局ID

int类型,incrby,利用原子性

incrby userid 1000

分库分表的场景,一次性拿一段

5、计数器

int类型,incr方法

例如:文章的阅读量、微博点赞数、允许一定的延迟,先写入Redis再定时同步到数据库

6、限流

int类型,incr方法

以访问者的ip和其他信息作为key,访问一次增加一次计数,超过次数则返回false

7、位统计

String类型的bitcount(1.6.6的bitmap数据结构介绍)

字符是以8位二进制存储的

set k1 a
setbit k1 6 1
setbit k1 7 0
get k1 
/* 6 7 代表的a的二进制位的修改
a 对应的ASCII码是97,转换为二进制数据是01100001
b 对应的ASCII码是98,转换为二进制数据是01100010

因为bit非常节省空间(1 MB=8388608 bit),可以用来做大数据量的统计。
*/

例如:在线用户统计,留存用户统计

setbit onlineusers 01 
setbit onlineusers 11 
setbit onlineusers 20

支持按位与、按位或等等操作

BITOPANDdestkeykey[key...] ,对一个或多个 key 求逻辑并,并将结果保存到 destkey 。       
BITOPORdestkeykey[key...] ,对一个或多个 key 求逻辑或,并将结果保存到 destkey 。 
BITOPXORdestkeykey[key...] ,对一个或多个 key 求逻辑异或,并将结果保存到 destkey 。 
BITOPNOTdestkeykey ,对给定 key 求逻辑非,并将结果保存到 destkey 。

计算出7天都在线的用户

BITOP "AND" "7_days_both_online_users" "day_1_online_users" "day_2_online_users" ...  "day_7_online_users"

8、购物车

String 或hash。所有String可以做的hash都可以做

图片

图片

  • key:用户id;field:商品id;value:商品数量。

  • +1:hincr。-1:hdecr。删除:hdel。全?。篽getall。商品数:hlen。

9、用户消息时间线timeline

list,双向链表,直接作为timeline就好了。插入有序

10、消息队列

List提供了两个阻塞的弹出操作:blpop/brpop,可以设置超时时间

  • blpop:blpop key1 timeout 移除并获取列表的第一个元素,如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止。

  • brpop:brpop key1 timeout 移除并获取列表的最后一个元素,如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止。

上面的操作。其实就是java的阻塞队列。学习的东西越多。学习成本越低

  • 队列:先进先除:rpush blpop,左头右尾,右边进入队列,左边出队列

  • 栈:先进后出:rpush brpop

11、抽奖

自带一个随机获得值

spop myset

12、点赞、签到、打卡

图片

假如上面的微博ID是t1001,用户ID是u3001

用 like:t1001 来维护 t1001 这条微博的所有点赞用户

  • 点赞了这条微博:sadd like:t1001 u3001

  • 取消点赞:srem like:t1001 u3001

  • 是否点赞:sismember like:t1001 u3001

  • 点赞的所有用户:smembers like:t1001

  • 点赞数:scard like:t1001

是不是比数据库简单多了。

13、商品标签

图片

图片

老规矩,用 tags:i5001 来维护商品所有的标签。

  • sadd tags:i5001 画面清晰细腻

  • sadd tags:i5001 真彩清晰显示屏

  • sadd tags:i5001 流程至极

14、商品筛选

// 获取差集
sdiff set1 set2
// 获取交集(intersection )
sinter set1 set2
// 获取并集
sunion set1 set2
图片

图片

假如:iPhone13 上市了

sadd brand:apple iPhone13

sadd brand:ios iPhone13

sad screensize:6.0-6.24 iPhone13

sad screentype:lcd iPhone 13

筛选商品,苹果的、ios的、屏幕在6.0-6.24之间的,屏幕材质是LCD屏幕

sinter brand:apple brand:ios screensize:6.0-6.24 screentype:lcd

15、用户关注、推荐模型

follow 关注 fans 粉丝

相互关注:

  • sadd 1:follow 2

  • sadd 2:fans 1

  • sadd 1:fans 2

  • sadd 2:follow 1

我关注的人也关注了他(取交集):

  • sinter 1:follow 2:fans

可能认识的人:

  • 用户1可能认识的人(差集):sdiff 2:follow 1:follow

  • 用户2可能认识的人:sdiff 1:follow 2:follow

16、排行榜

id 为6001 的新闻点击数加1:zincrby hotNews:20190926 1 n6001

获取今天点击最多的15条:zrevrange hotNews:20190926 0 15 withscores

图片

我是臻大虾,分享更多java后端干货,咱们下期见

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容