前置任务:
改造原有的sql-client,使之能够读取文件,提交里面的任务到flink集群。
启动blink集群参考 http://08643.cn/p/4f59e512b178
目标:使用sql-client提交任务,读取kafka消息,自定义udtf解析,存入csv文件。
1.sql文件
create table kafka_stream(
messageKey varbinary,
`message` varbinary,
topic varchar,
`partition` int,
`offset` bigint
) with (
type ='kafka011',
topic = 't102',
`group.id`='t1',
bootstrap.servers = 'localhost:9092'
);
create table csv_sink(
id varchar,
name varchar,
age varchar
) with (
type ='csv',
path = '/Users/IdeaProjects/github/apache-flink/build-target/bin/test4.csv'
);
insert into csv_sink
SELECT
T.id,
T.user_name,
T.age
from
kafka_stream as S LEFT JOIN
LATERAL TABLE (parseDataMessage(message)) as T (
id,
user_name,
age
) on true;
2.udtf 解析kafka 消息
kafka里消息格式是
{"attributes":{"schemaName":"dbtest","tableName":"result1"},"fieldCount":3,"fields":[{"index":0,"name":"id","null":false,"primaryKey":true,"type":"INTEGER","value":"90995"},{"index":1,"name":"user_name","null":false,"primaryKey":false,"type":"VARCHAR","value":"a"},{"index":2,"name":"age","null":false,"primaryKey":false,"type":"INTEGER","value":"90995"}],"timestamp":1550733014456}
udtf
public class ParseDataMessageUDTF extends TableFunction<Row> {
public static final String __TIMESTAMP = "__timestamp";
public static final String __EVENT_TYPE = "__event_type";
public static final String __ATTRIBUTES = "__attributes";
private List<String> fieldName = Lists.newArrayList();
public ParseDataMessageUDTF(String args) {
fieldName = Arrays.asList(args.split(","));
}
public void eval(byte[] message) {
String mess = new String(message, Charset.forName("UTF-8"));
DataMessage dataMessage = JSON.parseObject(mess, DataMessage.class);
Row row = new Row(fieldName.size());
Map<String, List<Field>> map = dataMessage.getFields().stream().collect(Collectors.groupingBy(Field::getName));
for (int i = 0; i < fieldName.size(); i++) {
switch (fieldName.get(i)) {
case __TIMESTAMP:
row.setField(i, dataMessage.getTimestamp());
break;
case __EVENT_TYPE:
row.setField(i, dataMessage.getEventType().toString());
break;
case __ATTRIBUTES:
row.setField(i, dataMessage.getAttributes());
break;
default:
List<Field> flist = map.get(fieldName.get(i));
if (flist != null && !flist.isEmpty()) {
row.setField(i, flist.get(0).getValue());
} else {
row.setField(i, null);
}
}
}
collect(row);
}
@Override
// 如果返回值是Row,就必须重载实现这个方法,显式地告诉系统返回的字段类型
public DataType getResultType(Object[] arguments, Class[] argTypes) {
TypeInformation[] typeInformations = new TypeInformation[fieldName.size()];
for (int i = 0; i < fieldName.size(); i++) {
switch (fieldName.get(i)) {
case __TIMESTAMP:
typeInformations[i] = BasicTypeInfo.of(Long.class);
break;
case __EVENT_TYPE:
typeInformations[i] = TypeInformation.of(String.class);
break;
case __ATTRIBUTES:
typeInformations[i] = new MapTypeInfo<>(BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO);
break;
default:
typeInformations[i] = BasicTypeInfo.of(String.class);
}
}
RowTypeInfo rowType = new RowTypeInfo(typeInformations);
return new TypeInfoWrappedDataType(rowType);
}
}
3.打shade包 参考 http://08643.cn/p/4f481fd8c0cb
4.注册udtf funtion
拷贝sql-client-defaults.yaml 为sql-client-kafka.yaml
functions: # empty list
- name: parseDataMessage
from: class
class: io.bigdata.blink.udf.ParseDataMessageUDTF
constructor:
- "id,user_name,age"
4.提交任务
./sql-client.sh embedded --sqlPath /Users/IdeaProjects/github/apache-flink/build-target/bin/kafka.sql -e sql-client-kafka.yaml -j ../lib/udtf-1.0-SNAPSHOT.jar
写入数据到kafka