Python-100天(二)-Python语言进阶

数据结构和算法

  • 算法:解决问题的方法和步骤
  • 评价算法的好坏:渐近时间复杂度和渐近空间复杂度。
  • 渐近时间复杂度的大O标记:
    • 常量时间复杂度 - 布隆过滤器 / 哈希存储

    • 对数时间复杂度 - 折半查找(二分查找)

    • 线性时间复杂度 - 顺序查找 / 桶排序

    • 对数线性时间复杂度 - 高级排序算法(归并排序、快速排序)

    • 平方时间复杂度 - 简单排序算法(选择排序、插入排序、冒泡排序)

    • 立方时间复杂度 - Floyd算法 / 矩阵乘法运算

    • 几何级数时间复杂度 - 汉诺塔

    • 阶乘时间复杂度 - 旅行经销商问题 - NP

  • 排序算法(选择、冒泡和归并)和查找算法(顺序和折半)
def select_sort(origin_items, comp=lambda x, y: x < y):
    """简单选择排序"""
    items = origin_items[:]
    for i in range(len(items) - 1):
        min_index = i
        for j in range(i + 1, len(items)):
            if comp(items[j], items[min_index]):
                min_index = j
        items[i], items[min_index] = items[min_index], items[i]
    return items
def bubble_sort(origin_items, comp=lambda x, y: x > y):
    """高质量冒泡排序(搅拌排序)"""
    items = origin_items[:]
    for i in range(len(items) - 1):
        swapped = False
        for j in range(i, len(items) - 1 - i):
            if comp(items[j], items[j + 1]):
                items[j], items[j + 1] = items[j + 1], items[j]
                swapped = True
        if swapped:
            swapped = False
            for j in range(len(items) - 2 - i, i, -1):
                if comp(items[j - 1], items[j]):
                    items[j], items[j - 1] = items[j - 1], items[j]
                    swapped = True
        if not swapped:
            break
    return items
def merge_sort(items, comp=lambda x, y: x <= y):
    """归并排序(分治法)"""
    if len(items) < 2:
        return items[:]
    mid = len(items) // 2
    left = merge_sort(items[:mid], comp)
    right = merge_sort(items[mid:], comp)
    return merge(left, right, comp)


def merge(items1, items2, comp):
    """合并(将两个有序的列表合并成一个有序的列表)"""
    items = []
    index1, index2 = 0, 0
    while index1 < len(items1) and index2 < len(items2):
        if comp(items1[index1], items2[index2]):
            items.append(items1[index1])
            index1 += 1
        else:
            items.append(items2[index2])
            index2 += 1
    items += items1[index1:]
    items += items2[index2:]
    return items
def seq_search(items, key):
    """顺序查找"""
    for index, item in enumerate(items):
        if item == key:
            return index
    return -1
def bin_search(items, key):
    """折半查找"""
    start, end = 0, len(items) - 1
    while start <= end:
        mid = (start + end) // 2
        if key > items[mid]:
            start = mid + 1
        elif key < items[mid]:
            end = mid - 1
        else:
            return mid
    return -1
  • 使用生成式(推导式)语法
prices = {
    'AAPL': 191.88,
    'GOOG': 1186.96,
    'IBM': 149.24,
    'ORCL': 48.44,
    'ACN': 166.89,
    'FB': 208.09,
    'SYMC': 21.29
}
# 用股票价格大于100元的股票构造一个新的字典
prices2 = {key: value for key, value in prices.items() if value > 100}
print(prices2)

说明:生成式(推导式)可以用来生成列表、集合和字典。

  • 嵌套的列表
names = ['关羽', '张飞', '赵云', '马超', '黄忠']
courses = ['语文', '数学', '英语']
# 录入五个学生三门课程的成绩
# 错误 - 参考http://pythontutor.com/visualize.html#mode=edit
# scores = [[None] * len(courses)] * len(names)
scores = [[None] * len(courses) for _ in range(len(names))]
for row, name in enumerate(names):
    for col, course in enumerate(courses):
        scores[row][col] = float(input(f'请输入{name}的{course}成绩: '))
        print(scores)

Python Tutor - VISUALIZE CODE AND GET LIVE HELP

  • heapq、itertools等的用法
"""
从列表中找出最大的或最小的N个元素
堆结构(大根堆/小根堆)
"""
import heapq

list1 = [34, 25, 12, 99, 87, 63, 58, 78, 88, 92]
list2 = [
    {'name': 'IBM', 'shares': 100, 'price': 91.1},
    {'name': 'AAPL', 'shares': 50, 'price': 543.22},
    {'name': 'FB', 'shares': 200, 'price': 21.09},
    {'name': 'HPQ', 'shares': 35, 'price': 31.75},
    {'name': 'YHOO', 'shares': 45, 'price': 16.35},
    {'name': 'ACME', 'shares': 75, 'price': 115.65}
]
print(heapq.nlargest(3, list1))
print(heapq.nsmallest(3, list1))
print(heapq.nlargest(2, list2, key=lambda x: x['price']))
print(heapq.nlargest(2, list2, key=lambda x: x['shares']))
"""
迭代工具 - 排列 / 组合 / 笛卡尔积
"""
import itertools

itertools.permutations('ABCD')
itertools.combinations('ABCDE', 3)
itertools.product('ABCD', '123')
  • collections??橄碌墓ぞ呃?/li>
"""
找出序列中出现次数最多的元素
"""
from collections import Counter

words = [
    'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
    'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around',
    'the', 'eyes', "don't", 'look', 'around', 'the', 'eyes',
    'look', 'into', 'my', 'eyes', "you're", 'under'
]
counter = Counter(words)
print(counter.most_common(3))
  • 常用算法:
    • 穷举法 - 又称为暴力破解法,对所有的可能性进行验证,直到找到正确答案。
    • 贪婪法 - 在对问题求解时,总是做出在当前看来
    • 最好的选择,不追求最优解,快速找到满意解。
    • 分治法 - 把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到可以直接求解的程度,最后将子问题的解进行合并得到原问题的解。
    • 回溯法 - 回溯法又称为试探法,按选优条件向前搜索,当搜索到某一步发现原先选择并不优或达不到目标时,就退回一步重新选择。
    • 动态规划 - 基本思想也是将待求解问题分解成若干个子问题,先求解并保存这些子问题的解,避免产生大量的重复运算。

穷举法例子:百钱百鸡和五人分鱼。

# 公鸡5元一只 母鸡3元一只 小鸡1元三只
# 用100元买100只鸡 问公鸡/母鸡/小鸡各多少只
for x in range(20):
    for y in range(33):
        z = 100 - x - y
        if 5 * x + 3 * y + z // 3 == 100 and z % 3 == 0:
            print(x, y, z)

# A、B、C、D、E五人在某天夜里合伙捕鱼 最后疲惫不堪各自睡觉
# 第二天A第一个醒来 他将鱼分为5份 扔掉多余的1条 拿走自己的一份
# B第二个醒来 也将鱼分为5份 扔掉多余的1条 拿走自己的一份
# 然后C、D、E依次醒来也按同样的方式分鱼 问他们至少捕了多少条鱼
fish = 6
while True:
    total = fish
    enough = True
    for _ in range(5):
        if (total - 1) % 5 == 0:
            total = (total - 1) // 5 * 4
        else:
            enough = False
            break
    if enough:
        print(fish)
        break
    fish += 5

贪婪法例子:假设小偷有一个背包,最多能装20公斤赃物,他闯入一户人家,发现如下表所示的物品。很显然,他不能把所有物品都装进背包,所以必须确定拿走哪些物品,留下哪些物品。

|  名称  | 价格(美元) | 重量(kg) |
| :----: | :----------: | :--------: |
|  电脑  |     200      |     20     |
| 收音机 |      20      |     4      |
|   钟   |     175      |     10     |
|  花瓶  |      50      |     2      |
|   书   |      10      |     1      |
|  油画  |      90      |     9      |
"""
贪婪法:在对问题求解时,总是做出在当前看来是最好的选择,不追求最优解,快速找到满意解。
输入:
20 6
电脑 200 20
收音机 20 4
钟 175 10
花瓶 50 2
书 10 1
油画 90 9
"""
class Thing(object):
    """物品"""

    def __init__(self, name, price, weight):
        self.name = name
        self.price = price
        self.weight = weight

    @property
    def value(self):
        """价格重量比"""
        return self.price / self.weight


def input_thing():
    """输入物品信息"""
    name_str, price_str, weight_str = input().split()
    return name_str, int(price_str), int(weight_str)


def main():
    """主函数"""
    max_weight, num_of_things = map(int, input().split())
    all_things = []
    for _ in range(num_of_things):
        all_things.append(Thing(*input_thing()))
    all_things.sort(key=lambda x: x.value, reverse=True)
    total_weight = 0
    total_price = 0
    for thing in all_things:
        if total_weight + thing.weight <= max_weight:
            print(f'小偷拿走了{thing.name}')
            total_weight += thing.weight
            total_price += thing.price
    print(f'总价值: {total_price}美元')


if __name__ == '__main__':
    main()

分治法例子:快速排序。

"""
快速排序 - 选择枢轴对元素进行划分,左边都比枢轴小右边都比枢轴大
"""
def quick_sort(origin_items, comp=lambda x, y: x <= y):
    items = origin_items[:]
    _quick_sort(items, 0, len(items) - 1, comp)
    return items


def _quick_sort(items, start, end, comp):
    if start < end:
        pos = _partition(items, start, end, comp)
        _quick_sort(items, start, pos - 1, comp)
        _quick_sort(items, pos + 1, end, comp)


def _partition(items, start, end, comp):
    pivot = items[end]
    i = start - 1
    for j in range(start, end):
        if comp(items[j], pivot):
            i += 1
            items[i], items[j] = items[j], items[i]
    items[i + 1], items[end] = items[end], items[i + 1]
    return i + 1

回溯法例子:骑士巡逻。

"""
递归回溯法:叫称为试探法,按选优条件向前搜索,当搜索到某一步,发现原先选择并不优或达不到目标时,就退回一步重新选择,比较经典的问题包括骑士巡逻、八皇后和迷宫寻路等。
"""
import sys
import time

SIZE = 5
total = 0


def print_board(board):
    for row in board:
        for col in row:
            print(str(col).center(4), end='')
        print()


def patrol(board, row, col, step=1):
    if row >= 0 and row < SIZE and \
        col >= 0 and col < SIZE and \
        board[row][col] == 0:
        board[row][col] = step
        if step == SIZE * SIZE:
            global total
            total += 1
            print(f'第{total}种走法: ')
            print_board(board)
        patrol(board, row - 2, col - 1, step + 1)
        patrol(board, row - 1, col - 2, step + 1)
        patrol(board, row + 1, col - 2, step + 1)
        patrol(board, row + 2, col - 1, step + 1)
        patrol(board, row + 2, col + 1, step + 1)
        patrol(board, row + 1, col + 2, step + 1)
        patrol(board, row - 1, col + 2, step + 1)
        patrol(board, row - 2, col + 1, step + 1)
        board[row][col] = 0


def main():
    board = [[0] * SIZE for _ in range(SIZE)]
    patrol(board, SIZE - 1, SIZE - 1)


if __name__ == '__main__':
    main()

动态规划例子1:斐波拉切数列。(不使用动态规划将会是几何级数复杂度)

"""
动态规划 - 适用于有重叠子问题和最优子结构性质的问题
使用动态规划方法所耗时间往往远少于朴素解法(用空间换取时间)
"""
def fib(num, temp={}):
    """用递归计算Fibonacci数"""
    if num in (1, 2):
        return 1
    try:
        return temp[num]
    except KeyError:
        temp[num] = fib(num - 1) + fib(num - 2)
        return temp[num]

动态规划例子2:子列表元素之和的最大值。(使用动态规划可以避免二重循环)

说明:子列表指的是列表中索引(下标)连续的元素构成的列表;列表中的元素是int类型,可能包含正整数、0、负整数;程序输入列表中的元素,输出子列表元素求和的最大值,例如:

输入:1 -2 3 5 -3 2

输出:8

输入:0 -2 3 5 -1 2

输出:9

输入:-9 -2 -3 -5 -3

输出:-2

def main():
    items = list(map(int, input().split()))
    size = len(items)
    overall, partial = {}, {}
    overall[size - 1] = partial[size - 1] = items[size - 1]
    for i in range(size - 2, -1, -1):
        partial[i] = max(items[i], partial[i + 1] + items[i])
        overall[i] = max(partial[i], overall[i + 1])
    print(overall[0])


if __name__ == '__main__':
    main()

函数的使用方式

  • 将函数视为“一等公民”

    • 函数可以赋值给变量
    • 函数可以作为函数的参数
    • 函数可以作为函数的返回值
  • 高阶函数的用法(filter、map以及它们的替代品)

items1 = list(map(lambda x: x ** 2, filter(lambda x: x % 2, range(1, 10))))
items2 = [x ** 2 for x in range(1, 10) if x % 2]
  • 位置参数、可变参数、关键字参数、命名关键字参数

  • 参数的元信息(代码可读性问题)

  • 匿名函数和内联函数的用法(lambda函数)

  • 闭包和作用域问题

  • Python搜索变量的LEGB顺序(Local --> Embedded --> Global --> Built-in)

  • globalnonlocal关键字的作用
    global:声明或定义全局变量(要么直接使用现有的全局作用域的变量,要么定义一个变量放到全局作用域)。
    nonlocal:声明使用嵌套作用域的变量(嵌套作用域必须存在该变量,否则报错)。

  • 装饰器函数(使用装饰器和取消装饰器)

例子:输出函数执行时间的装饰器。

def record_time(func):
    """自定义装饰函数的装饰器"""
    
    @wraps(func)
    def wrapper(*args, **kwargs):
        start = time()
        result = func(*args, **kwargs)
        print(f'{func.__name__}: {time() - start}秒')
        return result
        
    return wrapper

如果装饰器不希望跟print函数耦合,可以编写带参数的装饰器。

from functools import wraps
from time import time


def record(output):
    """自定义带参数的装饰器"""

def decorate(func):
    
    @wraps(func)
    def wrapper(*args, **kwargs):
        start = time()
        result = func(*args, **kwargs)
        output(func.__name__, time() - start)
        return result
            
    return wrapper

return decorate
from functools import wraps
from time import time


class Record():
    """自定义装饰器类(通过__call__魔术方法使得对象可以当成函数调用)"""

    def __init__(self, output):
        self.output = output

    def __call__(self, func):

        @wraps(func)
        def wrapper(*args, **kwargs):
            start = time()
            result = func(*args, **kwargs)
            self.output(func.__name__, time() - start)
            return result

        return wrapper

说明:由于对带装饰功能的函数添加了@wraps装饰器,可以通过func.__wrapped__方式获得被装饰之前的函数或类来取消装饰器的作用。

例子:用装饰器来实现单例模式。

from functools import wraps


def singleton(cls):
    """装饰类的装饰器"""
    instances = {}

    @wraps(cls)
    def wrapper(*args, **kwargs):
        if cls not in instances:
            instances[cls] = cls(*args, **kwargs)
        return instances[cls]

    return wrapper


@singleton
class President():
    """总统(单例类)"""
    pass

说明:上面的代码中用到了闭包(closure),不知道你是否已经意识到了?;姑挥幸桓鲂∥侍饩褪?,上面的代码并没有实现线程安全的单例,如果要实现线程安全的单例应该怎么做呢?

from functools import wraps
from threading import Lock


def singleton(cls):
    """线程安全的单例装饰器"""
    instances = {}
    locker = Lock()

    @wraps(cls)
    def wrapper(*args, **kwargs):
        if cls not in instances:
            with locker:
                if cls not in instances:
                    instances[cls] = cls(*args, **kwargs)
        return instances[cls]

    return wrapper

面向对象相关知识

  • 三大支柱:封装、继承、多态

例子:工资结算系统。

"""
月薪结算系统 - 部门经理每月15000 程序员每小时200 销售员1800底薪加销售额5%提成
"""
from abc import ABCMeta, abstractmethod


class Employee(metaclass=ABCMeta):
    """员工(抽象类)"""

    def __init__(self, name):
        self.name = name

    @abstractmethod
    def get_salary(self):
        """结算月薪(抽象方法)"""
        pass


class Manager(Employee):
    """部门经理"""

    def get_salary(self):
        return 15000.0


class Programmer(Employee):
    """程序员"""

    def __init__(self, name, working_hour=0):
        self.working_hour = working_hour
        super().__init__(name)

    def get_salary(self):
        return 200.0 * self.working_hour


class Salesman(Employee):
    """销售员"""

    def __init__(self, name, sales=0.0):
        self.sales = sales
        super().__init__(name)

    def get_salary(self):
        return 1800.0 + self.sales * 0.05


class EmployeeFactory():
    """创建员工的工厂(工厂模式 - 通过工厂实现对象使用者和对象之间的解耦合)"""

    @staticmethod
    def create(emp_type, *args, **kwargs):
        """创建员工"""
        emp_type = emp_type.upper()
        emp = None
        if emp_type == 'M':
            emp = Manager(*args, **kwargs)
        elif emp_type == 'P':
            emp = Programmer(*args, **kwargs)
        elif emp_type == 'S':
            emp = Salesman(*args, **kwargs)
        return emp


def main():
    """主函数"""
    emps = [
        EmployeeFactory.create('M', '曹操'), 
        EmployeeFactory.create('P', '荀彧', 120),
        EmployeeFactory.create('P', '郭嘉', 85), 
        EmployeeFactory.create('S', '典韦', 123000),
    ]
    for emp in emps:
        print('%s: %.2f元' % (emp.name, emp.get_salary()))


if __name__ == '__main__':
    main()
  • 类与类之间的关系

    • is-a关系:继承
    • has-a关系:关联 / 聚合 / 合成
    • use-a关系:依赖

例子:扑克游戏。

"""
经验:符号常量总是优于字面常量,枚举类型是定义符号常量的最佳选择
"""
from enum import Enum, unique

import random


@unique
class Suite(Enum):
    """花色"""

    SPADE, HEART, CLUB, DIAMOND = range(4)

    def __lt__(self, other):
        return self.value < other.value


class Card():
    """牌"""

    def __init__(self, suite, face):
        """初始化方法"""
        self.suite = suite
        self.face = face

    def show(self):
        """显示牌面"""
        suites = ['??', '??', '??', '??']
        faces = ['', 'A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']
        return f'{suites[self.suite.value]} {faces[self.face]}'

    def __str__(self):
        return self.show()

    def __repr__(self):
        return self.show()


class Poker():
    """扑克"""

    def __init__(self):
        self.index = 0
        self.cards = [Card(suite, face)
                    for suite in Suite
                    for face in range(1, 14)]

    def shuffle(self):
        """洗牌(随机乱序)"""
        random.shuffle(self.cards)
        self.index = 0

    def deal(self):
        """发牌"""
        card = self.cards[self.index]
        self.index += 1
        return card

    @property
    def has_more(self):
        return self.index < len(self.cards)


class Player():
    """玩家"""

    def __init__(self, name):
        self.name = name
        self.cards = []

    def get_one(self, card):
        """摸一张牌"""
        self.cards.append(card)

    def sort(self, comp=lambda card: (card.suite, card.face)):
        """整理手上的牌"""
        self.cards.sort(key=comp)


def main():
    """主函数"""
    poker = Poker()
    poker.shuffle()
    players = [Player('东邪'), Player('西毒'), Player('南帝'), Player('北丐')]
    while poker.has_more:
        for player in players:
                player.get_one(poker.deal())
    for player in players:
        player.sort()
        print(player.name, end=': ')
        print(player.cards)


if __name__ == '__main__':
    main()

说明:上面的代码中使用了Emoji字符来表示扑克牌的四种花色,在某些不支持Emoji字符的系统上可能无法显示。

  • 对象的复制(深复制/深拷贝/深度克隆和浅复制/浅拷贝/影子克?。?/li>
  • 垃圾回收、循环引用和弱引用
    Python使用了自动化内存管理,这种管理机制以引用计数为基础,同时也引入了标记-清除分代收集两种机制为辅的策略。
typedef struct_object {
    /* 引用计数 */
    int ob_refcnt;
    /* 对象指针 */
    struct_typeobject *ob_type;
} PyObject;
/* 增加引用计数的宏定义 */
#define Py_INCREF(op)   ((op)->ob_refcnt++)
/* 减少引用计数的宏定义 */
#define Py_DECREF(op) \ //减少计数
    if (--(op)->ob_refcnt != 0) \
        ; \
    else \
        __Py_Dealloc((PyObject *)(op))

导致引用计数+1的情况:
- 对象被创建,例如a = 23
- 对象被引用,例如b = a
- 对象被作为参数,传入到一个函数中,例如f(a)
- 对象作为一个元素,存储在容器中,例如list1 = [a, a]

导致引用计数-1的情况:

- 对象的别名被显式销毁,例如`del a`
- 对象的别名被赋予新的对象,例如`a = 24`
- 一个对象离开它的作用域,例如f函数执行完毕时,f函数中的局部变量(全局变量不会)
- 对象所在的容器被销毁,或从容器中删除对象

引用计数可能会导致循环引用问题,而循环引用会导致内存泄露,如下面的代码所示。为了解决这个问题,Python中引入了“标记-清除”和“分代收集”。在创建一个对象的时候,对象被放在第一代中,如果在第一代的垃圾检查中对象存活了下来,该对象就会被放到第二代中,同理在第二代的垃圾检查中对象存活下来,该对象就会被放到第三代中。

```Python
# 循环引用会导致内存泄露 - Python除了引用技术还引入了标记清理和分代回收
# 在Python 3.6以前如果重写__del__魔术方法会导致循环引用处理失效
# 如果不想造成循环引用可以使用弱引用
list1 = []
list2 = [] 
list1.append(list2)
list2.append(list1)
```

以下情况会导致垃圾回收:

- 调用`gc.collect()`
- gc??榈募剖鞔锏椒е?- 程序退出

如果循环引用中两个对象都定义了`__del__`方法,gc??椴换嵯僬庑┎豢纱锒韵螅蛭猤c??椴恢烙Ω孟鹊饔媚母龆韵蟮腵__del__`方法,这个问题在Python 3.6中得到了解决。

也可以通过`weakref`??楣乖烊跻玫姆绞嚼唇饩鲅芬玫奈侍?。
  • 魔法属性和方法(请参考《Python魔法方法指南》)

有几个小问题请大家思考:
- 自定义的对象能不能使用运算符做运算?
- 自定义的对象能不能放到set中?能去重吗?
- 自定义的对象能不能作为dict的键?
- 自定义的对象能不能使用上下文语法?

  • 混入(Mixin)

例子:自定义字典限制只有在指定的key不存在时才能在字典中设置键值对。

class SetOnceMappingMixin:
    """自定义混入类"""
    __slots__ = ()

    def __setitem__(self, key, value):
        if key in self:
            raise KeyError(str(key) + ' already set')
        return super().__setitem__(key, value)


class SetOnceDict(SetOnceMappingMixin, dict):
    """自定义字典"""
    pass


my_dict= SetOnceDict()
try:
    my_dict['username'] = 'jackfrued'
    my_dict['username'] = 'hellokitty'
except KeyError:
    pass
print(my_dict)
  • 元编程和元类

例子:用元类实现单例模式。

import threading


class SingletonMeta(type):
    """自定义元类"""

    def __init__(cls, *args, **kwargs):
        cls.__instance = None
        cls.__lock = threading.Lock()
        super().__init__(*args, **kwargs)

    def __call__(cls, *args, **kwargs):
        if cls.__instance is None:
            with cls.__lock:
                if cls.__instance is None:
                    cls.__instance = super().__call__(*args, **kwargs)
        return cls.__instance


class President(metaclass=SingletonMeta):
    """总统(单例类)"""
    
    pass
  • 面向对象设计原则

    • 单一职责原则 (SRP)- 一个类只做该做的事情(类的设计要高内聚)
    • 开闭原则 (OCP)- 软件实体应该对扩展开发对修改关闭
    • 依赖倒转原则(DIP)- 面向抽象编程(在弱类型语言中已经被弱化)
    • 里氏替换原则(LSP) - 任何时候可以用子类对象替换掉父类对象
    • 接口隔离原则(ISP)- 接口要小而专不要大而全(Python中没有接口的概念)
    • 合成聚合复用原则(CARP) - 优先使用强关联关系而不是继承关系复用代码
    • 最少知识原则(迪米特法则,LoD)- 不要给没有必然联系的对象发消息

    说明:上面加粗的字母放在一起称为面向对象的SOLID原则。

    GoF设计模式

    • 创建型模式:单例、工厂、建造者、原型
    • 结构型模式:适配器、门面(外观)、代理
    • 行为型模式:迭代器、观察者、状态、策略

例子:可插拔的哈希算法。

class StreamHasher():
    """哈希摘要生成器(策略模式)"""

    def __init__(self, alg='md5', size=4096):
        self.size = size
        alg = alg.lower()
        self.hasher = getattr(__import__('hashlib'), alg.lower())()

    def __call__(self, stream):
        return self.to_digest(stream)

    def to_digest(self, stream):
        """生成十六进制形式的摘要"""
        for buf in iter(lambda: stream.read(self.size), b''):
            self.hasher.update(buf)
        return self.hasher.hexdigest()

def main():
    """主函数"""
    hasher1 = StreamHasher()
    with open('Python-3.7.1.tgz', 'rb') as stream:
        print(hasher1.to_digest(stream))
    hasher2 = StreamHasher('sha1')
    with open('Python-3.7.1.tgz', 'rb') as stream:
        print(hasher2(stream))


if __name__ == '__main__':
    main()

迭代器和生成器

  • 和迭代器相关的魔术方法(__iter____next__

  • 两种创建生成器的方式(生成器表达式和yield关键字)

def fib(num):
    """生成器"""
    a, b = 0, 1
    for _ in range(num):
        a, b = b, a + b
        yield a


class Fib(object):
    """迭代器"""
    
    def __init__(self, num):
        self.num = num
        self.a, self.b = 0, 1
        self.idx = 0

    def __iter__(self):
        return self

    def __next__(self):
        if self.idx < self.num:
            self.a, self.b = self.b, self.a + self.b
            self.idx += 1
            return self.a
        raise StopIteration()

并发编程

Python中实现并发编程的三种方案:多线程、多进程和异步I/O。并发编程的好处在于可以提升程序的执行效率以及改善用户体验;坏处在于并发的程序不容易开发和调试,同时对其他程序来说它并不友好。

  • 多线程:Python中提供了Thread类并辅以Lock、Condition、Event、Semaphore和Barrier。Python中有GIL来防止多个线程同时执行本地字节码,这个锁对于CPython是必须的,因为CPython的内存管理并不是线程安全的,因为GIL的存在多线程并不能发挥CPU的多核特性。
"""
面试题:进程和线程的区别和联系?
进程 - 操作系统分配内存的基本单位 - 一个进程可以包含一个或多个线程
线程 - 操作系统分配CPU的基本单位
并发编程(concurrent programming)
1. 提升执行性能 - 让程序中没有因果关系的部分可以并发的执行
2. 改善用户体验 - 让耗时间的操作不会造成程序的假死
"""
import glob
import os
import threading

from PIL import Image

PREFIX = 'thumbnails'


def generate_thumbnail(infile, size, format='PNG'):
    """生成指定图片文件的缩略图"""
file, ext = os.path.splitext(infile)
file = file[file.rfind('/') + 1:]
outfile = f'{PREFIX}/{file}_{size[0]}_{size[1]}.{ext}'
img = Image.open(infile)
img.thumbnail(size, Image.ANTIALIAS)
img.save(outfile, format)


def main():
    """主函数"""
if not os.path.exists(PREFIX):
    os.mkdir(PREFIX)
for infile in glob.glob('images/*.png'):
    for size in (32, 64, 128):
            # 创建并启动线程
        threading.Thread(
            target=generate_thumbnail, 
            args=(infile, (size, size))
        ).start()
        

if __name__ == '__main__':
main()

多个线程竞争资源的情况

"""
多线程程序如果没有竞争资源处理起来通常也比较简单
当多个线程竞争临界资源的时候如果缺乏必要的?;ご胧┚突岬贾率荽砺?说明:临界资源就是被多个线程竞争的资源
"""
import time
import threading

from concurrent.futures import ThreadPoolExecutor


class Account(object):
    """银行账户"""

    def __init__(self):
        self.balance = 0.0
        self.lock = threading.Lock()

    def deposit(self, money):
        # 通过锁?;ち俳缱试?        with self.lock:
            new_balance = self.balance + money
            time.sleep(0.001)
            self.balance = new_balance


class AddMoneyThread(threading.Thread):
    """自定义线程类"""

    def __init__(self, account, money):
        self.account = account
        self.money = money
        # 自定义线程的初始化方法中必须调用父类的初始化方法
        super().__init__()

    def run(self):
        # 线程启动之后要执行的操作
        self.account.deposit(self.money)

def main():
    """主函数"""
    account = Account()
    # 创建线程池
    pool = ThreadPoolExecutor(max_workers=10)
    futures = []
    for _ in range(100):
        # 创建线程的第1种方式
        # threading.Thread(
        #     target=account.deposit, args=(1, )
        # ).start()
        # 创建线程的第2种方式
        # AddMoneyThread(account, 1).start()
        # 创建线程的第3种方式
        # 调用线程池中的线程来执行特定的任务
        future = pool.submit(account.deposit, 1)
        futures.append(future)
    # 关闭线程池
    pool.shutdown()
    for future in futures:
        future.result()
    print(account.balance)


if __name__ == '__main__':
    main()

修改上面的程序,启动5个线程向账户中存钱,5个线程从账户中取钱,取钱时如果余额不足就暂停线程进行等待。为了达到上述目标,需要对存钱和取钱的线程进行调度,在余额不足时取钱的线程暂停并释放锁,而存钱的线程将钱存入后要通知取钱的线程,使其从暂停状态被唤醒。可以使用threading??榈腃ondition来实现线程调度,该对象也是基于锁来创建的,代码如下所示:

"""
多个线程竞争一个资源 - ?;ち俳缱试?- 锁(Lock/RLock)
多个线程竞争多个资源(线程数>资源数) - 信号量(Semaphore)
多个线程的调度 - 暂停线程执行/唤醒等待中的线程 - Condition
"""
from concurrent.futures import ThreadPoolExecutor
from random import randint
from time import sleep

import threading


class Account():
    """银行账户"""

    def __init__(self, balance=0):
        self.balance = balance
        lock = threading.Lock()
        self.condition = threading.Condition(lock)

    def withdraw(self, money):
        """取钱"""
        with self.condition:
            while money > self.balance:
                self.condition.wait()
            new_balance = self.balance - money
            sleep(0.001)
            self.balance = new_balance

    def deposit(self, money):
        """存钱"""
        with self.condition:
            new_balance = self.balance + money
            sleep(0.001)
            self.balance = new_balance
            self.condition.notify_all()


def add_money(account):
    while True:
        money = randint(5, 10)
        account.deposit(money)
        print(threading.current_thread().name, 
            ':', money, '====>', account.balance)
        sleep(0.5)


def sub_money(account):
    while True:
        money = randint(10, 30)
        account.withdraw(money)
        print(threading.current_thread().name, 
            ':', money, '<====', account.balance)
        sleep(1)


def main():
    account = Account()
    with ThreadPoolExecutor(max_workers=10) as pool:
        for _ in range(5):
            pool.submit(add_money, account)
            pool.submit(sub_money, account)


if __name__ == '__main__':
    main()
  • 多进程:多进程可以有效的解决GIL的问题,实现多进程主要的类是Process,其他辅助的类跟threading??橹械睦嗨?,进程间共享数据可以使用管道、套接字等,在multiprocessing??橹杏幸桓鯭ueue类,它基于管道和锁机制提供了多个进程共享的队列。下面是官方文档上关于多进程和进程池的一个示例。
"""
多进程和进程池的使用
多线程因为GIL的存在不能够发挥CPU的多核特性
对于计算密集型任务应该考虑使用多进程
time python3 example22.py
real    0m11.512s
user    0m39.319s
sys     0m0.169s
使用多进程后实际执行时间为11.512秒,而用户时间39.319秒约为实际执行时间的4倍
这就证明我们的程序通过多进程使用了CPU的多核特性,而且这台计算机配置了4核的CPU
"""
import concurrent.futures
import math

PRIMES = [
    1116281,
    1297337,
    104395303,
    472882027,
    533000389,
    817504243,
    982451653,
    112272535095293,
    112582705942171,
    112272535095293,
    115280095190773,
    115797848077099,
    1099726899285419
] * 5


def is_prime(n):
    """判断素数"""
    if n % 2 == 0:
        return False

    sqrt_n = int(math.floor(math.sqrt(n)))
    for i in range(3, sqrt_n + 1, 2):
        if n % i == 0:
            return False
    return True


def main():
    """主函数"""
    with concurrent.futures.ProcessPoolExecutor() as executor:
        for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
            print('%d is prime: %s' % (number, prime))


if __name__ == '__main__':
    main()

说明:多线程和多进程的比较。

以下情况需要使用多线程:

  1. 程序需要维护许多共享的状态(尤其是可变状态),Python中的列表、字典、集合都是线程安全的,所以使用线程而不是进程维护共享状态的代价相对较小。
  2. 程序会花费大量时间在I/O操作上,没有太多并行计算的需求且不需占用太多的内存。

以下情况需要使用多进程:

  1. 程序执行计算密集型任务(如:字节码操作、数据处理、科学计算)。
  2. 程序的输入可以并行的分成块,并且可以将运算结果合并。
  3. 程序在内存使用方面没有任何限制且不强依赖于I/O操作(如:读写文件、套接字等)。
  • 异步处理:从调度程序的任务队列中挑选任务,该调度程序以交叉的形式执行这些任务,我们并不能保证任务将以某种顺序去执行,因为执行顺序取决于队列中的一项任务是否愿意将CPU处理时间让位给另一项任务。异步任务通常通过多任务协作处理的方式来实现,由于执行时间和顺序的不确定,因此需要通过回调式编程或者future对象来获取任务执行的结果。Python 3通过asyncio??楹?code>await和async关键字(在Python 3.7中正式被列为关键字)来支持异步处理。
"""
异步I/O - async / await
"""
import asyncio


def num_generator(m, n):
    """指定范围的数字生成器"""
    yield from range(m, n + 1)


async def prime_filter(m, n):
    """素数过滤器"""
    primes = []
    for i in num_generator(m, n):
        flag = True
        for j in range(2, int(i ** 0.5 + 1)):
            if i % j == 0:
                flag = False
                break
        if flag:
            print('Prime =>', i)
            primes.append(i)

        await asyncio.sleep(0.001)
    return tuple(primes)


async def square_mapper(m, n):
    """平方映射器"""
    squares = []
    for i in num_generator(m, n):
        print('Square =>', i * i)
        squares.append(i * i)

        await asyncio.sleep(0.001)
    return squares


def main():
    """主函数"""
    loop = asyncio.get_event_loop()
    future = asyncio.gather(prime_filter(2, 100), square_mapper(1, 100))
    future.add_done_callback(lambda x: print(x.result()))
    loop.run_until_complete(future)
    loop.close()


if __name__ == '__main__':
    main()

说明:上面的代码使用get_event_loop函数获得系统默认的事件循环,通过gather函数可以获得一个future对象,future对象的add_done_callback可以添加执行完成时的回调函数,loop对象的run_until_complete方法可以等待通过future对象获得协程执行结果。

Python中有一个名为aiohttp的三方库,它提供了异步的HTTP客户端和服务器,这个三方库可以跟asyncio模块一起工作,并提供了对Future对象的支持。Python 3.6中引入了async和await来定义异步执行的函数以及创建异步上下文,在Python 3.7中它们正式成为了关键字。下面的代码异步的从5个URL中获取页面并通过正则表达式的命名捕获组提取了网站的标题。

import asyncio
import re

import aiohttp

PATTERN = re.compile(r'\<title\>(?P<title>.*)\<\/title\>')


async def fetch_page(session, url):
    async with session.get(url, ssl=False) as resp:
        return await resp.text()


async def show_title(url):
    async with aiohttp.ClientSession() as session:
        html = await fetch_page(session, url)
        print(PATTERN.search(html).group('title'))


def main():
    urls = ('https://www.python.org/',
            'https://git-scm.com/',
            'https://www.jd.com/',
            'https://www.taobao.com/',
            'https://www.douban.com/')
    loop = asyncio.get_event_loop()
    tasks = [show_title(url) for url in urls]
    loop.run_until_complete(asyncio.wait(tasks))
    loop.close()


if __name__ == '__main__':
    main()

说明:异步I/O与多进程的比较。

当程序不需要真正的并发性或并行性,而是更多的依赖于异步处理和回调时,asyncio就是一种很好的选择。如果程序中有大量的等待与休眠时,也应该考虑asyncio,它很适合编写没有实时数据处理需求的Web应用服务器。

Python还有很多用于处理并行任务的三方库,例如:joblib、PyMP等。实际开发中,要提升系统的可扩展性和并发性通常有垂直扩展(增加单个节点的处理能力)和水平扩展(将单个节点变成多个节点)两种做法??梢酝ü⒍恿欣词迪钟τ贸绦虻慕怦詈?,消息队列相当于是多线程同步队列的扩展版本,不同机器上的应用程序相当于就是线程,而共享的分布式消息队列就是原来程序中的Queue。消息队列(面向消息的中间件)的最流行和最标准化的实现是AMQP(高级消息队列协议),AMQP源于金融行业,提供了排队、路由、可靠传输、安全等功能,最著名的实现包括:Apache的ActiveMQ、RabbitMQ等。

要实现任务的异步化,可以使用名为Celery的三方库。Celery是Python编写的分布式任务队列,它使用分布式消息进行工作,可以基于RabbitMQ或Redis来作为后端的消息代理。

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352