基于Apache doris怎么构建数据中台(八)-数仓管理

数仓分层模型

数仓分层模型的好处:

1、数据结构化更清晰:每一个数据分层都有它的作用域和职责,在使用表的时候能更方便地定位和理解。

2、数据血缘追踪:提供给外界使用的是一张业务表,但是这张业务表可能来源很多张表。如果有一张来源表出问题了,我们可以快速准确的定位到问题,并清楚每张表的作用范围。

3、增强数据复用能力:减少重复开发,通过数据分层规范化,开发一些通用的中间层数据,能够减少重复计算,提高单张业务表的使用率,提升系统的执行效率。

4、简化复杂的问题:把一个复杂的业务分成多个步骤实现,每一层只处理单一的步骤,比较简单和容易理解。而且便于维护数据的准确性,当数据出现问题之后,可以不用修复所有的数据,只需要从有问题的步骤开始修复。

5、减少业务的影响:业务可能会经常变化,这样做就不必改一次业务就需要重新接入数据。

6、统一数据口径:通过数据分层,提供统一的数据出口,统一对外输出的数据口径

数仓主题域管理

数仓主题域管理实现数据业务线和数仓主题域管理,实现不同数据域的管理以及数据域下的数据主题管理。

数仓看板

主要是为了提供一个全面的数仓数据总览视图,从存储、数据库、数据表、业务域等角度全方位了解数仓数据情况,同时提供技术视角的数仓表健康总览视图

  1. 从存储角度:每个业务数据库所占存储空间、表数量
  2. 从技术角度全面了解数仓中的数据量,副本数,tablet数量等

对于数据仓库的成本,价值,质量,标准缺乏一套标准的评估体系,很难回答目前的成本分布,以及价值体现。资产360评估功能,对存储资源,计算资源,数据质量,数仓标准等进行定量的全方位评估。帮助管理者回答资产分布情况以及资产的价值体现

数仓任务管理及资源监控

  1. 管理和监控数据部分Routine load任务的,包括可视化创建routine load任务,启动,暂停,恢复、停止等操作
  2. 实现对doris数仓statistic资源的监控,包括数据库名称、数据库表数量,副本数量,分区数量,tablet数量,不健康tablet数量,克隆中的表数量,teblet不一致的数量,

数仓用户及权限管理

主要是管理数仓用户,角色,权限

实现对数仓用户的添加、删除、修改密码,授权,撤销权限

对角色的添加、删除,修改,授权、撤销权限等

实现对数据用户,角色权限的精细化管理

数仓资源管理

  1. 管理Spark资源(主要是用于数据ETL,数据迁移)
  2. ODBC资源:查询和导入外部表的数据

数仓备份及恢复

改功能主要是提供集群数据的备份及恢复功能

  1. 数据备份是增量备份,定时执行
  2. 可以对选定表,或者选定表的指定分区数据进行备份到HDFS,
  3. 选定备份进行还原操作,

数仓表管理

  1. 表的分区管理
  2. 表配额管理
  3. 表副本管理
  4. 表数据量展示
  5. 表tablet管理

数仓数据库管理

  1. 数据库数据统计展示
  2. 数据库副本管理
  3. 数据库配额管理

运维监控

Doris集群监控

主要是监控Doris数仓组件运行状态

  1. 管理节点FE运行状态
  2. 数据节点BE运行状态
  3. Doris FE <Replayed journal id>状态一致性检查,出现不一致的情况及时预警

Kafka集群监控

监控内容:

  1. kafka集群监控:各节点运行状态,集群Topic、Broker等多维度历史与实时关键指标查看
  2. Kafka topic列表
  3. kafka topic数据查看
  4. Topic 运维:包括创建、查询、扩容、修改属性、下线等
  5. 指标监控:基于Topic生产消费各环节耗时统计,监控不同分位数性能指标
  6. 消费组运维:支持将消费偏移重置至指定时间或指定位置

Canal监控

  1. Canal集群管理
  2. Canal服务管理及状态监控
  3. Canal 示例管理及监控

DataX 监控

主要监控DataX任务调度执行情况,执行状态及查看任务执行日志信息。

Flink 作业监控

主要是监控所有Flink Job任务运行情况,提供一个统一监控管理入口

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容