此教程演示分析存储在 Seurat 对象中的 RNA 速率定量。参数基于RNA速率教程。如果您在工作中使用Seurat,请引用:
RNA velocity of single cells
Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov, Katja Lidschreiber, Maria E. Kastriti, Peter L?nnerberg, Alessandro Furlan, Jean Fan, Lars E. Borm, Zehua Liu, David van Bruggen, Jimin Guo, Xiaoling He, Roger Barker, Erik Sundstr?m, Gon?alo Castelo-Branco, Patrick Cramer, Igor Adameyko, Sten Linnarsson & Peter V. Kharchenko
doi: 10.1038/s41586-018-0414-6
Website: https://velocyto.org
准备工作:提前安装好如下3个R包。
加载所需R包
library(Seurat)
library(velocyto.R)
library(SeuratWrappers)
下载所需示例数据
# If you don't have velocyto's example mouse bone marrow dataset, download with the CURL command
# curl::curl_download(url = 'http://pklab.med.harvard.edu/velocyto/mouseBM/SCG71.loom', destfile
# = '~/Downloads/SCG71.loom')
转换为seurat对象
ldat <- ReadVelocity(file = "~/Downloads/SCG71.loom")
bm <- as.Seurat(x = ldat)
整合降维聚类
bm <- SCTransform(object = bm, assay = "spliced")
bm <- RunPCA(object = bm, verbose = FALSE)
bm <- FindNeighbors(object = bm, dims = 1:20)
bm <- FindClusters(object = bm)
bm <- RunUMAP(object = bm, dims = 1:20)
速率分析及可视化
bm <- RunVelocity(object = bm, deltaT = 1, kCells = 25, fit.quantile = 0.02)
ident.colors <- (scales::hue_pal())(n = length(x = levels(x = bm)))
names(x = ident.colors) <- levels(x = bm)
cell.colors <- ident.colors[Idents(object = bm)]
names(x = cell.colors) <- colnames(x = bm)
show.velocity.on.embedding.cor(emb = Embeddings(object = bm, reduction = "umap"), vel = Tool(object = bm,
slot = "RunVelocity"), n = 200, scale = "sqrt", cell.colors = ac(x = cell.colors, alpha = 0.5),
cex = 0.8, arrow.scale = 3, show.grid.flow = TRUE, min.grid.cell.mass = 0.5, grid.n = 40, arrow.lwd = 1,
do.par = FALSE, cell.border.alpha = 0.1)