XGBoost使用
原始数据
数据介绍
鸢尾花数据集是由杰出的统计学家R.A.Fisher在20世纪30年代中期创建的,它被公认为用于数据挖掘的最著名的数据集。它包含3种植物种类(Iris setosa、Irisversicolor和Iris virginica),每种各有50个样本。
数据下载地址
链接:https://pan.baidu.com/s/1hrG8Yn6 密码:pzgn
XGBoost的特性及使用
XGBoost特性
- 正则化
- 标准GBM的实现没有像XGBoost这样的正则化步骤。正则化对减少过拟合也是有帮助的。
- 实际上,XGBoost以“正则化提升(regularized boosting)”技术而闻名。
- 并行处理
- XGBoost可以实现并行处理,相比GBM有了速度的飞跃。
- 不过,众所周知,Boosting算法是顺序处理的,它怎么可能并行呢?每一课树的构造都依赖于前一棵树,那具体是什么让我们能用多核处理器去构造一个树呢?我希望你理解了这句话的意思。如果你希望了解更多,点击这个链接。
- XGBoost 也支持Hadoop实现。
- 高度的灵活性
- XGBoost 允许用户定义自定义优化目标和评价标准
- 它对模型增加了一个全新的维度,所以我们的处理不会受到任何限制。
- 缺失值处理
- XGBoost内置处理缺失值的规则。
- 用户需要提供一个和其它样本不同的值,然后把它作为一个参数传进去,以此来作为缺失值的取值。XGBoost在不同节点遇到缺失值时采用不同的处理方法,并且会学习未来遇到缺失值时的处理方法。
- 剪枝
- 当分裂时遇到一个负损失时,GBM会停止分裂。因此GBM实际上是一个贪心算法。
- XGBoost会一直分裂到指定的最大深度(max_depth),然后回过头来剪枝。如果某个节点之后不再有正值,它会去除这个分裂。
- 这种做法的优点,当一个负损失(如-2)后面有个正损失(如+10)的时候,就显现出来了。GBM会在-2处停下来,因为它遇到了一个负值。但是XGBoost会继续分裂,然后发现这两个分裂综合起来会得到+8,因此会保留这两个分裂。
- 内置交叉验证
- XGBoost允许在每一轮boosting迭代中使用交叉验证。因此,可以方便地获得最优boosting迭代次数。
- 而GBM使用网格搜索,只能检测有限个值。
- 在已有的模型基础上继续
- XGBoost可以在上一轮的结果上继续训练。这个特性在某些特定的应用上是一个巨大的优势。
- sklearn中的GBM的实现也有这个功能,两种算法在这一点上是一致的。
XGBoost参数
XGBoost的作者把所有的参数分成了三类:
- 通用参数:宏观函数控制。
- Booster参数:控制每一步的booster(tree/regression)
- 学习目标参数:控制训练目标的表现
通用参数
-
booster[默认gbtree]
选择每次迭代的模型,有两种选择:
- gbtree:基于树的模型
- gbliner:线性模型
-
silent[默认0]
- 当这个参数值为1时,静默模式开启,不会输出任何信息。
- 一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。
-
nthread[默认值为最大可能的线程数]
- 这个参数用来进行多线程控制,应当输入系统的核数。
- 如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。
- 还有两个参数,XGBoost会自动设置,目前你不用管它。接下来咱们一起看booster参数。
booster参数
尽管有两种booster可供选择,我这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。
- eta[默认0.3]
- 和GBM中的 learning rate 参数类似。
- 通过减少每一步的权重,可以提高模型的鲁棒性。
- 典型值为0.01-0.2。
- min_child_weight[默认1]
- 决定最小叶子节点样本权重和。
- 和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。
- 这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。
- 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。
- max_depth[默认6]
- 和GBM中的参数相同,这个值为树的最大深度。
- 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。
- 需要使用CV函数来进行调优。
- 典型值:3-10
- max_leaf_nodes
- 树上最大的节点或叶子的数量。
- 可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成n2个叶子。
- 如果定义了这个参数,GBM会忽略max_depth参数。
- gamma[默认0]
- 在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。
- 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。
- max_delta_step[默认0]
- 这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。
- 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。
- 这个参数一般用不到,但是你可以挖掘出来它更多的用处。
- subsample[默认1]
- 和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。
- 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。
- 典型值:0.5-1
- colsample_bytree[默认1]
- 和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
- 典型值:0.5-1
- colsample_bylevel[默认1]
- 用来控制树的每一级的每一次分裂,对列数的采样的占比。
- 我个人一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。
- lambda[默认1]
- 权重的L2正则化项。(和Ridge regression类似)。
- 这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。
- alpha[默认1]
- 权重的L1正则化项。(和Lasso regression类似)。
- 可以应用在很高维度的情况下,使得算法的速度更快。
- scale_pos_weight[默认1]
- 在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。
学习目标参数
这个参数用来控制理想的优化目标和每一步结果的度量方法。
-
objective[默认reg:linear]
这个参数定义需要被最小化的损失函数。最常用的值有:
- binary:logistic 二分类的逻辑回归,返回预测的概率(不是类别)。
- multi:softmax 使用softmax的多分类器,返回预测的类别(不是概率)。 在这种情况下,你还需要多设一个参数:num_class(类别数目)。
- multi:softprob 和multi:softmax参数一样,但是返回的是每个数据属于各个类别的概率。
-
eval_metric[默认值取决于objective参数的取值]
- 对于有效数据的度量方法。
- 对于回归问题,默认值是rmse,对于分类问题,默认值是error。
-
典型值有:
- rmse 均方根误差(∑Ni=1?2N??????√)
- mae 平均绝对误差(∑Ni=1|?|N)
- logloss 负对数似然函数值
- error 二分类错误率(阈值为0.5)
- merror 多分类错误率
- mlogloss 多分类logloss损失函数
- auc 曲线下面积
-
seed(默认0)
- 随机数的种子
- 设置它可以复现随机数据的结果,也可以用于调整参数
如果你之前用的是Scikit-learn,你可能不太熟悉这些参数。但是有个好消息,python的XGBoost模块有一个sklearn包,XGBClassifier。这个包中的参数是按sklearn风格命名的?;岣谋涞暮牵?/p>
- eta ->learning_rate
- lambda->reg_lambda
- alpha->reg_alpha
实验过程
环境配置
- 前往https://www.lfd.uci.edu/~gohlke/pythonlibs/#pip,下载xgboost的whl文件。cp35代表适用与python3.5的环境。
- 将下载的whl文件通过pip命令安装
实验过程
-
引入相关包
# -*- coding:utf-8 -*- import xgboost as xgb import numpy as np from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score
-
读取文件
通过numpy读取文件
data = np.loadtxt('iris.data.txt', dtype=float, delimiter=',', converters={4: iris_type}) x, y = np.split(data, [4], axis=1)
?
-
划分测试集和训练集
# 拆分成训练集与测试集 x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1)
-
设置参数并训练
#设置参数 param = {'max_depth': max_depth, 'eta': eta, 'silent': 1, 'objective': 'multi:softmax', 'num_class': num_class} num_round = round # 训练模型 bsg = xgb.train(param, train, num_round, evals=watch_list)
-
预测准确率并作图
# 预测模型 y_hat = bsg.predict(test) # 计算误差 #result = y_test.reshape(1, -1) == y_hat #true = float(np.sum(result)) / len(y_hat) return accuracy_score(y_test, y_hat)