优化算法进阶
介绍更高级的优化算法
Momentum
%matplotlib inline
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
import torch
eta = 0.4
def f_2d(x1, x2):
return 0.1 * x1 ** 2 + 2 * x2 ** 2
def gd_2d(x1, x2, s1, s2):
return (x1 - eta * 0.2 * x1, x2 - eta * 4 * x2, 0, 0)
d2l.show_trace_2d(f_2d, d2l.train_2d(gd_2d))
epoch 20, x1 -0.943467, x2 -0.000073
可以看到,同一位置上,目标函数在竖直方向(轴方向)比在水平方向(轴方向)的斜率的绝对值更大。因此,给定学习率,梯度下降迭代自变量时会使自变量在竖直方向比在水平方向移动幅度更大。那么,我们需要一个较小的学习率从而避免自变量在竖直方向上越过目标函数最优解。然而,这会造成自变量在水平方向上朝最优解移动变慢。
下面我们试着将学习率调得稍大一点,此时自变量在竖直方向不断越过最优解并逐渐发散。
eta = 0.6
d2l.show_trace_2d(f_2d, d2l.train_2d(gd_2d))
epoch 20, x1 -0.387814, x2 -1673.365109
def momentum_2d(x1, x2, v1, v2):
v1 = beta * v1 + eta * 0.2 * x1
v2 = beta * v2 + eta * 4 * x2
return x1 - v1, x2 - v2, v1, v2
eta, beta = 0.4, 0.5
d2l.show_trace_2d(f_2d, d2l.train_2d(momentum_2d))
epoch 20, x1 -0.062843, x2 0.001202
eta = 0.6
d2l.show_trace_2d(f_2d, d2l.train_2d(momentum_2d))
epoch 20, x1 0.007188, x2 0.002553
def get_data_ch7():
data = np.genfromtxt('/home/kesci/input/airfoil4755/airfoil_self_noise.dat', delimiter='\t')
data = (data - data.mean(axis=0)) / data.std(axis=0)
return torch.tensor(data[:1500, :-1], dtype=torch.float32), \
torch.tensor(data[:1500, -1], dtype=torch.float32)
features, labels = get_data_ch7()
def init_momentum_states():
v_w = torch.zeros((features.shape[1], 1), dtype=torch.float32)
v_b = torch.zeros(1, dtype=torch.float32)
return (v_w, v_b)
def sgd_momentum(params, states, hyperparams):
for p, v in zip(params, states):
v.data = hyperparams['momentum'] * v.data + hyperparams['lr'] * p.grad.data
p.data -= v.data
我们先将动量超参数momentum设0.5
d2l.train_ch7(sgd_momentum, init_momentum_states(),
{'lr': 0.02, 'momentum': 0.5}, features, labels)
loss: 0.243297, 0.057950 sec per epoch
将动量超参数momentum增大到0.9
d2l.train_ch7(sgd_momentum, init_momentum_states(),
{'lr': 0.02, 'momentum': 0.9}, features, labels)
loss: 0.260418, 0.059441 sec per epoch
可见目标函数值在后期迭代过程中的变化不够平滑。直觉上,10倍小批量梯度比2倍小批量梯度大了5倍,我们可以试着将学习率减小到原来的1/5。此时目标函数值在下降了一段时间后变化更加平滑。
d2l.train_ch7(sgd_momentum, init_momentum_states(),
{'lr': 0.004, 'momentum': 0.9}, features, labels)
loss: 0.243650, 0.063532 sec per epoch
Pytorch Class
在Pytorch中,torch.optim.SGD已实现了Momentum。
d2l.train_pytorch_ch7(torch.optim.SGD, {'lr': 0.004, 'momentum': 0.9},
features, labels)
loss: 0.243692, 0.048604 sec per epoch
AdaGrad
%matplotlib inline
import math
import torch
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
def adagrad_2d(x1, x2, s1, s2):
g1, g2, eps = 0.2 * x1, 4 * x2, 1e-6 # 前两项为自变量梯度
s1 += g1 ** 2
s2 += g2 ** 2
x1 -= eta / math.sqrt(s1 + eps) * g1
x2 -= eta / math.sqrt(s2 + eps) * g2
return x1, x2, s1, s2
def f_2d(x1, x2):
return 0.1 * x1 ** 2 + 2 * x2 ** 2
eta = 0.4
d2l.show_trace_2d(f_2d, d2l.train_2d(adagrad_2d))
epoch 20, x1 -2.382563, x2 -0.158591
下面将学习率增大到2??梢钥吹阶员淞扛杆俚乇平俗钣沤?。
eta = 2
d2l.show_trace_2d(f_2d, d2l.train_2d(adagrad_2d))
epoch 20, x1 -0.002295, x2 -0.000000
Implement
同动量法一样,AdaGrad算法需要对每个自变量维护同它一样形状的状态变量。我们根据AdaGrad算法中的公式实现该算法。
def get_data_ch7():
data = np.genfromtxt('/home/kesci/input/airfoil4755/airfoil_self_noise.dat', delimiter='\t')
data = (data - data.mean(axis=0)) / data.std(axis=0)
return torch.tensor(data[:1500, :-1], dtype=torch.float32), \
torch.tensor(data[:1500, -1], dtype=torch.float32)
features, labels = get_data_ch7()
def init_adagrad_states():
s_w = torch.zeros((features.shape[1], 1), dtype=torch.float32)
s_b = torch.zeros(1, dtype=torch.float32)
return (s_w, s_b)
def adagrad(params, states, hyperparams):
eps = 1e-6
for p, s in zip(params, states):
s.data += (p.grad.data**2)
p.data -= hyperparams['lr'] * p.grad.data / torch.sqrt(s + eps)
word2vec
PTB 数据集 Skip-Gram 跳字模型 负采样近似 训练模型
词嵌入基础
我们在“循环神经网络的从零开始实现”一节中使用 one-hot 向量表示单词,虽然它们构造起来很容易,但通常并不是一个好选择。一个主要的原因是,one-hot 词向量无法准确表达不同词之间的相似度,如我们常常使用的余弦相似度。
Word2Vec 词嵌入工具的提出正是为了解决上面这个问题,它将每个词表示成一个定长的向量,并通过在语料库上的预训练使得这些向量能较好地表达不同词之间的相似和类比关系,以引入一定的语义信息?;诹街指怕誓P偷募偕?,我们可以定义两种 Word2Vec 模型:
import collections
import math
import random
import sys
import time
import os
import numpy as np
import torch
from torch import nn
import torch.utils.data as Data
PTB 数据集
简单来说,Word2Vec 能从语料中学到如何将离散的词映射为连续空间中的向量,并保留其语义上的相似关系。那么为了训练 Word2Vec 模型,我们就需要一个自然语言语料库,模型将从中学习各个单词间的关系,这里我们使用经典的 PTB 语料库进行训练。PTB (Penn Tree Bank) 是一个常用的小型语料库,它采样自《华尔街日报》的文章,包括训练集、验证集和测试集。我们将在PTB训练集上训练词嵌入模型。
载入数据集
数据集训练文件 ptb.train.txt 示例:
aer banknote berlitz calloway centrust cluett fromstein gitano guterman ...
pierre N years old will join the board as a nonexecutive director nov. N
mr. is chairman of n.v. the dutch publishing group
...
with open('/home/kesci/input/ptb_train1020/ptb.train.txt', 'r') as f:
lines = f.readlines() # 该数据集中句子以换行符为分割
raw_dataset = [st.split() for st in lines] # st是sentence的缩写,单词以空格为分割
print('# sentences: %d' % len(raw_dataset))
# 对于数据集的前3个句子,打印每个句子的词数和前5个词
# 句尾符为 '' ,生僻词全用 '' 表示,数字则被替换成了 'N'
for st in raw_dataset[:3]:
print('# tokens:', len(st), st[:5])
# sentences: 42068
# tokens: 24 ['aer', 'banknote', 'berlitz', 'calloway', 'centrust']
# tokens: 15 ['pierre', '<unk>', 'N', 'years', 'old']
# tokens: 11 ['mr.', '<unk>', 'is', 'chairman', 'of']
建立词语索引
counter = collections.Counter([tk for st in raw_dataset for tk in st]) # tk是token的缩写
counter = dict(filter(lambda x: x[1] >= 5, counter.items())) # 只保留在数据集中至少出现5次的词
idx_to_token = [tk for tk, _ in counter.items()]
token_to_idx = {tk: idx for idx, tk in enumerate(idx_to_token)}
dataset = [[token_to_idx[tk] for tk in st if tk in token_to_idx]
for st in raw_dataset] # raw_dataset中的单词在这一步被转换为对应的idx
num_tokens = sum([len(st) for st in dataset])
'# tokens: %d' % num_tokens
out:
'# tokens: 887100'
二次采样
def discard(idx):
'''
@params:
idx: 单词的下标
@return: True/False 表示是否丢弃该单词
'''
return random.uniform(0, 1) < 1 - math.sqrt(
1e-4 / counter[idx_to_token[idx]] * num_tokens)
subsampled_dataset = [[tk for tk in st if not discard(tk)] for st in dataset]
print('# tokens: %d' % sum([len(st) for st in subsampled_dataset]))
def compare_counts(token):
return '# %s: before=%d, after=%d' % (token, sum(
[st.count(token_to_idx[token]) for st in dataset]), sum(
[st.count(token_to_idx[token]) for st in subsampled_dataset]))
print(compare_counts('the'))
print(compare_counts('join'))
*# tokens: 375995
*# the: before=50770, after=2161
*# join: before=45, after=45
提取中心词和背景词
def get_centers_and_contexts(dataset, max_window_size):
'''
@params:
dataset: 数据集为句子的集合,每个句子则为单词的集合,此时单词已经被转换为相应数字下标
max_window_size: 背景词的词窗大小的最大值
@return:
centers: 中心词的集合
contexts: 背景词窗的集合,与中心词对应,每个背景词窗则为背景词的集合
'''
centers, contexts = [], []
for st in dataset:
if len(st) < 2: # 每个句子至少要有2个词才可能组成一对“中心词-背景词”
continue
centers += st
for center_i in range(len(st)):
window_size = random.randint(1, max_window_size) # 随机选取背景词窗大小
indices = list(range(max(0, center_i - window_size),
min(len(st), center_i + 1 + window_size)))
indices.remove(center_i) # 将中心词排除在背景词之外
contexts.append([st[idx] for idx in indices])
return centers, contexts
all_centers, all_contexts = get_centers_and_contexts(subsampled_dataset, 5)
tiny_dataset = [list(range(7)), list(range(7, 10))]
print('dataset', tiny_dataset)
for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)):
print('center', center, 'has contexts', context)
dataset [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]]
center 0 has contexts [1, 2]
center 1 has contexts [0, 2, 3]
center 2 has contexts [0, 1, 3, 4]
center 3 has contexts [2, 4]
center 4 has contexts [3, 5]
center 5 has contexts [4, 6]
center 6 has contexts [5]
center 7 has contexts [8]
center 8 has contexts [7, 9]
center 9 has contexts [7, 8]
注:数据批量读取的实现需要依赖负采样近似的实现,故放于负采样近似部分进行讲解。
kip-Gram 跳字模型
PyTorch 预置的 Embedding 层
embed = nn.Embedding(num_embeddings=10, embedding_dim=4)
print(embed.weight)
x = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.long)
print(embed(x))
Parameter containing:
tensor([[-0.7417, -1.9469, -0.5745, 1.4267],
[ 1.1483, 1.4781, 0.3064, -0.2893],
[ 0.6840, 2.4566, -0.1872, -2.2061],
[ 0.3386, 1.3820, -0.3142, 0.2427],
[ 0.4802, -0.6375, -0.4730, 1.2114],
[ 0.7130, -0.9774, 0.5321, 1.4228],
[-0.6726, -0.5829, -0.4888, -0.3290],
[ 0.3152, -0.6827, 0.9950, -0.3326],
[-1.4651, 1.2344, 1.9976, -1.5962],
[ 0.0872, 0.0130, -2.1396, -0.6361]], requires_grad=True)
tensor([[[ 1.1483, 1.4781, 0.3064, -0.2893],
[ 0.6840, 2.4566, -0.1872, -2.2061],
[ 0.3386, 1.3820, -0.3142, 0.2427]],
[[ 0.4802, -0.6375, -0.4730, 1.2114],
[ 0.7130, -0.9774, 0.5321, 1.4228],
[-0.6726, -0.5829, -0.4888, -0.3290]]], grad_fn=<EmbeddingBackward>)
PyTorch 预置的批量乘法
X = torch.ones((2, 1, 4))
Y = torch.ones((2, 4, 6))
print(torch.bmm(X, Y).shape)
torch.Size([2, 1, 6])
Skip-Gram 模型的前向计算
def skip_gram(center, contexts_and_negatives, embed_v, embed_u):
'''
@params:
center: 中心词下标,形状为 (n, 1) 的整数张量
contexts_and_negatives: 背景词和噪音词下标,形状为 (n, m) 的整数张量
embed_v: 中心词的 embedding 层
embed_u: 背景词的 embedding 层
@return:
pred: 中心词与背景词(或噪音词)的内积,之后可用于计算概率 p(w_o|w_c)
'''
v = embed_v(center) # shape of (n, 1, d)
u = embed_u(contexts_and_negatives) # shape of (n, m, d)
pred = torch.bmm(v, u.permute(0, 2, 1)) # bmm((n, 1, d), (n, d, m)) => shape of (n, 1, m)
return pred
负采样近似
def get_negatives(all_contexts, sampling_weights, K):
'''
@params:
all_contexts: [[w_o1, w_o2, ...], [...], ... ]
sampling_weights: 每个单词的噪声词采样概率
K: 随机采样个数
@return:
all_negatives: [[w_n1, w_n2, ...], [...], ...]
'''
all_negatives, neg_candidates, i = [], [], 0
population = list(range(len(sampling_weights)))
for contexts in all_contexts:
negatives = []
while len(negatives) < len(contexts) * K:
if i == len(neg_candidates):
# 根据每个词的权重(sampling_weights)随机生成k个词的索引作为噪声词。
# 为了高效计算,可以将k设得稍大一点
i, neg_candidates = 0, random.choices(
population, sampling_weights, k=int(1e5))
neg, i = neg_candidates[i], i + 1
# 噪声词不能是背景词
if neg not in set(contexts):
negatives.append(neg)
all_negatives.append(negatives)
return all_negatives
sampling_weights = [counter[w]**0.75 for w in idx_to_token]
all_negatives = get_negatives(all_contexts, sampling_weights, 5)
注:除负采样方法外,还有层序 softmax (hiererarchical softmax) 方法也可以用来解决计算量过大的问题,请参考原书10.2.2节。
批量读取数据
def get_negatives(all_contexts, sampling_weights, K):
'''
@params:
all_contexts: [[w_o1, w_o2, ...], [...], ... ]
sampling_weights: 每个单词的噪声词采样概率
K: 随机采样个数
@return:
all_negatives: [[w_n1, w_n2, ...], [...], ...]
'''
all_negatives, neg_candidates, i = [], [], 0
population = list(range(len(sampling_weights)))
for contexts in all_contexts:
negatives = []
while len(negatives) < len(contexts) * K:
if i == len(neg_candidates):
# 根据每个词的权重(sampling_weights)随机生成k个词的索引作为噪声词。
# 为了高效计算,可以将k设得稍大一点
i, neg_candidates = 0, random.choices(
population, sampling_weights, k=int(1e5))
neg, i = neg_candidates[i], i + 1
# 噪声词不能是背景词
if neg not in set(contexts):
negatives.append(neg)
all_negatives.append(negatives)
return all_negatives
sampling_weights = [counter[w]**0.75 for w in idx_to_token]
all_negatives = get_negatives(all_contexts, sampling_weights, 5)
*注:除负采样方法外,还有层序 softmax (hiererarchical softmax) 方法也可以用来解决计算量过大的问题,请参考[原书10.2.2节]
批量读取数据
class MyDataset(torch.utils.data.Dataset):
def __init__(self, centers, contexts, negatives):
assert len(centers) == len(contexts) == len(negatives)
self.centers = centers
self.contexts = contexts
self.negatives = negatives
def __getitem__(self, index):
return (self.centers[index], self.contexts[index], self.negatives[index])
def __len__(self):
return len(self.centers)
def batchify(data):
'''
用作DataLoader的参数collate_fn
@params:
data: 长为batch_size的列表,列表中的每个元素都是__getitem__得到的结果
@outputs:
batch: 批量化后得到 (centers, contexts_negatives, masks, labels) 元组
centers: 中心词下标,形状为 (n, 1) 的整数张量
contexts_negatives: 背景词和噪声词的下标,形状为 (n, m) 的整数张量
masks: 与补齐相对应的掩码,形状为 (n, m) 的0/1整数张量
labels: 指示中心词的标签,形状为 (n, m) 的0/1整数张量
'''
max_len = max(len(c) + len(n) for _, c, n in data)
centers, contexts_negatives, masks, labels = [], [], [], []
for center, context, negative in data:
cur_len = len(context) + len(negative)
centers += [center]
contexts_negatives += [context + negative + [0] * (max_len - cur_len)]
masks += [[1] * cur_len + [0] * (max_len - cur_len)] # 使用掩码变量mask来避免填充项对损失函数计算的影响
labels += [[1] * len(context) + [0] * (max_len - len(context))]
batch = (torch.tensor(centers).view(-1, 1), torch.tensor(contexts_negatives),
torch.tensor(masks), torch.tensor(labels))
return batch
batch_size = 512
num_workers = 0 if sys.platform.startswith('win32') else 4
dataset = MyDataset(all_centers, all_contexts, all_negatives)
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True,
collate_fn=batchify,
num_workers=num_workers)
for batch in data_iter:
for name, data in zip(['centers', 'contexts_negatives', 'masks',
'labels'], batch):
print(name, 'shape:', data.shape)
break
centers shape: torch.Size([512, 1])
contexts_negatives shape: torch.Size([512, 60])
masks shape: torch.Size([512, 60])
labels shape: torch.Size([512, 60])
训练模型
损失函数
词嵌入进阶
介绍了GloVe模型和使用GloVe模型的近义词和类比词的实现
import torch
import torchtext.vocab as vocab
print([key for key in vocab.pretrained_aliases.keys() if "glove" in key])
cache_dir = "/home/kesci/input/GloVe6B5429"
glove = vocab.GloVe(name='6B', dim=50, cache=cache_dir)
print("一共包含%d个词。" % len(glove.stoi))
print(glove.stoi['beautiful'], glove.itos[3366])
['glove.42B.300d', 'glove.840B.300d', 'glove.twitter.27B.25d', 'glove.twitter.27B.50d', 'glove.twitter.27B.100d', 'glove.twitter.27B.200d', 'glove.6B.50d', 'glove.6B.100d', 'glove.6B.200d', 'glove.6B.300d']
一共包含400000个词。
3366 beautiful
求近义词和类比词
求近义词
由于词向量空间中的余弦相似性可以衡量词语含义的相似性(为什么?),我们可以通过寻找空间中的 k 近邻,来查询单词的近义词。
def knn(W, x, k):
'''
@params:
W: 所有向量的集合
x: 给定向量
k: 查询的数量
@outputs:
topk: 余弦相似性最大k个的下标
[...]: 余弦相似度
'''
cos = torch.matmul(W, x.view((-1,))) / (
(torch.sum(W * W, dim=1) + 1e-9).sqrt() * torch.sum(x * x).sqrt())
_, topk = torch.topk(cos, k=k)
topk = topk.cpu().numpy()
return topk, [cos[i].item() for i in topk]
def get_similar_tokens(query_token, k, embed):
'''
@params:
query_token: 给定的单词
k: 所需近义词的个数
embed: 预训练词向量
'''
topk, cos = knn(embed.vectors,
embed.vectors[embed.stoi[query_token]], k+1)
for i, c in zip(topk[1:], cos[1:]): # 除去输入词
print('cosine sim=%.3f: %s' % (c, (embed.itos[i])))
get_similar_tokens('chip', 3, glove)
cosine sim=0.856: chips
cosine sim=0.749: intel
cosine sim=0.749: electronics
100%|█████████▉| 398393/400000 [00:30<00:00, 38997.22it/s]
get_similar_tokens('baby', 3, glove)
cosine sim=0.839: babies
cosine sim=0.800: boy
cosine sim=0.792: girl
get_similar_tokens('beautiful', 3, glove)
cosine sim=0.921: lovely
cosine sim=0.893: gorgeous
cosine sim=0.830: wonderful
求类比词
def get_analogy(token_a, token_b, token_c, embed):
'''
@params:
token_a: 词a
token_b: 词b
token_c: 词c
embed: 预训练词向量
@outputs:
res: 类比词d
'''
vecs = [embed.vectors[embed.stoi[t]]
for t in [token_a, token_b, token_c]]
x = vecs[1] - vecs[0] + vecs[2]
topk, cos = knn(embed.vectors, x, 1)
res = embed.itos[topk[0]]
return res
get_analogy('man', 'woman', 'son', glove)
out
'daughter'
get_analogy('beijing', 'china', 'tokyo', glove)
out:
'japan'
get_analogy('bad', 'worst', 'big', glove)
out:
'biggest'
get_analogy('do', 'did', 'go', glove)
out
'went'