一篇WGCNA文章复现-GSE85589-下集

前面由于对miRNA的探针数目没有正确的理解,以为数据一直没有下载完全,折腾了一番。后来经老大jimmy提醒了,miRNA有2000左右的探针就是正常的呀。所以就可以愉快地继续进行分析啦!

下面是对数据集GSE85589中的原图进行复现,一篇WGCNA文章的原图就到手了!

1.下载数据+准备数据

rm(list = ls())
options(stringsAsFactors = F)
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
options(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")
library(GEOquery)
library(WGCNA)
f='GSE85589_eSet.Rdata'
# https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106292

# 这个包需要注意两个配置,一般来说自动化的配置是足够的。
#Setting options('download.file.method.GEOquery'='auto')
#Setting options('GEOquery.inmemory.gpl'=FALSE)
if(!file.exists(f)){
  gset <- getGEO('GSE85589', destdir=".",
                 AnnotGPL = F,     ## 注释文件
                 getGPL = F)       ## 平台文件
  save(gset,file=f)   ## 保存到本地
}
load('GSE85589_eSet.Rdata')  ## 载入数据
class(gset)  #查看数据类型
length(gset)  #
class(gset[[1]])
# 因为这个GEO数据集只有一个GPL平台,所以下载到的是一个含有一个元素的list
a=gset[[1]] 
dat=exprs(a) 
dim(dat)
pd=pData(a) 
save(dat,pd,file = 'step1-rawdata')
#######探索match的过程
# load('step1-rawdata')
# probe2symbol <- data.table::fread(file = "GPL19117-74051.txt")#对于这样的一个文件,就这么容易读进去了
# 
# probe2symbol <- probe2symbol[grep("Homo sapiens", #挑选出智人的注释信息
#                                   ignore.case = F, 
#                                   probe2symbol$`Species Scientific Name`), ]
# 
# dim(probe2symbol)
# table(probe2symbol$`Species Scientific Name`)#确保都是hs
# probe2symbol <- probe2symbol[ , c(1,4)]
# names(probe2symbol) <- c("PROBE_ID", "SYMBOL_ID")
# 
# dat <- as.data.frame(dat)
# dat[1:4,1:4]
# 
# rownames(dat) %in% probe2symbol$PROBE_ID
# table(rownames(dat) %in% probe2symbol$PROBE_ID)
# dat1 <- dat[match(rownames(dat),probe2symbol$PROBE_ID),]
# dat[1:4,1:4]
# dat2 <- dat[match(probe2symbol$PROBE_ID,rownames(dat)),]
# dat1[1:4,1:4]
# dat3 <- na.omit(dat2)
# dat2[1:4,1:4]
# 
# ids <- probe2symbol[match(rownames(dat),probe2symbol$PROBE_ID),]
# rownames(dat) <- ids$SYMBOL_ID
# table(duplicated(rownames(dat)))#table后发现false为2578行,正好是dat的行数,说明没有重复项
# #而其实table(duplicated(probe2symbol$SYMBOL_ID))后发现,还是有很多重复的基因名的,只是我们这里作为2578个的基因名是没有重复的/
# table(duplicated(probe2symbol$SYMBOL_ID))
# dat[1:4,1:4]

##############################################################################
load('step1-rawdata')
dat <- as.data.frame(dat)
dat[1:4,1:4]

probe2symbol <- data.table::fread(file = "GPL19117-74051.txt")#对于这样的一个文件,就这么容易读进去了

probe2symbol <- probe2symbol[grep("Homo sapiens", #挑选出智人的注释信息
                                  ignore.case = F, 
                                  probe2symbol$`Species Scientific Name`), ]

dim(probe2symbol)
table(probe2symbol$`Species Scientific Name`)#确保都是hs
probe2symbol <- probe2symbol[ , c(1,4)]
names(probe2symbol) <- c("PROBE_ID", "SYMBOL_ID")
ids <- probe2symbol
head(ids)
colnames(ids)=c('probe_id','symbol')  
ids=ids[ids$symbol != '',]
ids=ids[ids$probe_id %in%  rownames(dat),]
dat[1:4,1:4]   
dat=dat[ids$probe_id,] 
dat[1:4,1:4]
ids$median=apply(dat,1,median) #ids新建median这一列,列名为median,同时对dat这个矩阵按行操作,取每一行的中位数,将结果给到median这一列的每一行
ids=ids[order(ids$symbol,ids$median,decreasing = T),]#对ids$symbol按照ids$median中位数从大到小排列的顺序排序,将对应的行赋值为一个新的ids
ids=ids[!duplicated(ids$symbol),]#将symbol这一列取取出重复项,'!'为否,即取出不重复的项,去除重复的gene ,保留每个基因最大表达量结果s
dat=dat[ids$probe_id,] #新的ids取出probe_id这一列,将dat按照取出的这一列中的每一行组成一个新的dat
rownames(dat)=ids$symbol#把ids的symbol这一列中的每一行给dat作为dat的行名
dat[1:4,1:4]  #保留每个基因ID第一次出现的信息
colnames(dat)

pdac <- grep('PC',pd$title)
normal <- grep('N[0-9]+\\b',pd$title)
x <- c(pdac,normal)
expr <- dat[,x]

#对pd_fil进行去除冗余项
length(unique(pd[,1]))
length(unique(pd[,2]))
length(unique(pd[,3]))
apply(pd,2,function(x){length(unique(x))})

apply(pd,2,function(x){
  length(unique(x))> 1
})
pd_fil <- pd[,apply(pd,2,function(x){
  length(unique(x))> 1
})]

dim(pd_fil)
cli <- pd_fil[x,]
save(expr,cli,file = 'step1-input.Rdata')

2.做WGCNA分析

library(WGCNA)
rm(list = ls())
load('step1-input.Rdata')

#####step 1
datExpr0=as.data.frame(t(expr))
gsg = goodSamplesGenes(datExpr0, verbose = 3)
gsg$allOK
if(T){
sampleTree = hclust(dist(datExpr0), method = "average")
#sizeGrWindow(15,12)
par(cex = 0.6)
par(mar = c(0,4,2,0))
#png("dynamicColors_mergedColors.png",width = 800,height = 600)
pdf('Sample clustering.pdf',width = 25,height =20 )
plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5, cex.axis = 1.5, cex.main = 2)
abline(h = 26.5, col = "red")
dev.off()
}
image-20191112220756510
#这个仅留做记录,原文并没有去掉离群样本
clust = cutreeStatic(sampleTree, cutHeight = 26.5, minSize = 10)
table(clust) # 0代表切除的,1代表保留的
keepSamples = (clust==1)
datExpr = datExpr0[keepSamples, ]

下面是构建无尺度网络

###step 2
if(T){
  powers = c(c(1:10), seq(from = 12, to=30, by=2))
  # Call the network topology analysis function
  sft = pickSoftThreshold(datExpr, powerVector = powers, verbose = 5)
  #设置网络构建参数选择范围,计算无尺度分布拓扑矩阵
  png("step2-beta-value.png",width = 800,height = 600)
  # Plot the results:
  ##sizeGrWindow(9, 5)
  par(mfrow = c(1,2));
  cex1 = 0.9;
  # Scale-free topology fit index as a function of the soft-thresholding power
  plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
       xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n",
       main = paste("Scale independence"));
  text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
       labels=powers,cex=cex1,col="red");
  # this line corresponds to using an R^2 cut-off of h
  abline(h=0.90,col="red")
  # Mean connectivity as a function of the soft-thresholding power
  plot(sft$fitIndices[,1], sft$fitIndices[,5],
       xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
       main = paste("Mean connectivity"))
  text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")
  dev.off()
}
sft 
sft$powerEstimate
save(sft,file = "step2_beta_value.Rdata")
image-20191121214914371
image-20191121214920739

如下原文所示,用的贝塔值是1,我的结果也是,然后R^2值是0.89,接下来选择==一步法==

image-20191112225334998
###step 3
if(T){
  cor <- WGCNA::cor
  if(T){
    net = blockwiseModules(
      datExpr,
      power = 1,
      TOMType = "unsigned", minModuleSize = 30,
      reassignThreshold = 0, mergeCutHeight = 0.25,
      numericLabels = TRUE, pamRespectsDendro = FALSE,
      saveTOMs = F, 
      verbose = 3
    )
    table(net$colors) 
  }
  
  sizeGrWindow(12, 9)
  mergedColors = labels2colors(net$colors)
  pdf('step3-dynamicColors_mergedColors.pdf',width = 25,height =20 )
  # Plot the dendrogram and the module colors underneath
  plotDendroAndColors(net$dendrograms[[1]], mergedColors[net$blockGenes[[1]]],
                      "Module colors",
                      dendroLabels = FALSE, hang = 0.03,
                      addGuide = TRUE, guideHang = 0.05)
  dev.off()
  moduleLabels = net$colors
  moduleColors = labels2colors(net$colors)
  table(moduleColors)
  MEs = net$MEs;
  geneTree = net$dendrograms[[1]];
  save(MEs, moduleLabels, moduleColors, geneTree,
       file = "AS-green-FPKM-02-networkConstruction-auto.RData")
  
}
image-20191121214932208
###step 4
if(T){
  nGenes = ncol(datExpr)
  nSamples = nrow(datExpr)
  #首先针对样本做个系统聚类
  datExpr_tree<-hclust(dist(datExpr), method = "average")
  #针对前面构造的样品矩阵添加对应颜色
  sample_colors1 <- numbers2colors(as.numeric(factor(datTraits$group_list)), 
                                   colors = c("green","blue","red","yellow","black"),signed = FALSE)
  
  ssss=as.matrix(data.frame(group_list=sample_colors1))                         
  par(mar = c(1,4,3,1),cex=0.8)
  pdf('step4-sample-subtype-cluster.pdf',width = 25,height =20 )
  plotDendroAndColors(datExpr_tree, ssss,
                      groupLabels = colnames(sample),
                      cex.dendroLabels = 0.8,
                      marAll = c(1, 4, 3, 1),
                      cex.rowText = 0.01,
                      main = "Sample dendrogram and trait heatmap")
  dev.off()
}
image-20191113005038902
##step 5
table(datTraits)  
if(T){
  nGenes = ncol(datExpr)
  nSamples = nrow(datExpr)
  design1=model.matrix(~0+as.factor(datTraits$group_list))
  design=design1
  colnames(design) 
  colnames(design)=c(levels(as.factor(datTraits$group_list)) ) 
  moduleColors <- labels2colors(net$colors)
  # Recalculate MEs with color labels
  MEs0 = moduleEigengenes(datExpr, moduleColors)$eigengenes
  MEs = orderMEs(MEs0); ##不同颜色的模块的ME值矩 (样本vs???
  moduleTraitCor = cor(MEs, design , use = "p");
  moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples)
  
  sizeGrWindow(10,6)
  # Will display correlations and their p-values
  textMatrix = paste(signif(moduleTraitCor, 2), "\n(",
                     signif(moduleTraitPvalue, 1), ")", sep = "");
  dim(textMatrix) = dim(moduleTraitCor)
  png("step5-Module-trait-relationships.png",width = 800,height = 1200,res = 120)
  par(mar = c(6, 8.5, 3, 3));
  # Display the correlation values within a heatmap plot
  labeledHeatmap(Matrix = moduleTraitCor,
                 xLabels = colnames(design),
                 yLabels = names(MEs),
                 ySymbols = names(MEs),
                 colorLabels = FALSE,
                 colors = greenWhiteRed(50),
                 textMatrix = textMatrix,
                 setStdMargins = FALSE,
                 cex.text = 0.5,
                 zlim = c(-1,1),
                 main = paste("Module-trait relationships"))
  dev.off()
  table( labels2colors(net$colors))
}

<img src="https://tva1.sinaimg.cn/large/006y8mN6gy1g9600thqfxj30no0xcq69.jpg" alt="image-20191121214946750" style="zoom:50%;" />

###step 6
###############首先计算??橛牖虻南喙匦跃卣?# 把各个module的名字提取出来(从第三个字符开始),用于一会重命名
modNames = substring(names(MEs), 3)
# 得到矩阵
geneModuleMembership = as.data.frame(cor(datExpr, MEs, use = "p"))
# 矩阵t检验
MMPvalue = as.data.frame(corPvalueStudent(as.matrix(geneModuleMembership), nSamples))
# 修改列名
names(geneModuleMembership) = paste("MM", modNames, sep="")
names(MMPvalue) = paste("p.MM", modNames, sep="")


################再计算性状与基因的相关性矩阵
PC <- as.data.frame(design[,2])
names(PC) = "PC"
# 得到矩阵
geneTraitSignificance = as.data.frame(cor(datExpr, PC, use = "p"))
# 矩阵t检验
GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))
# 修改列名
names(geneTraitSignificance) = paste("GS.", names(PC), sep="")
names(GSPvalue) = paste("p.GS.", names(PC), sep="")


###############最后把两个相关性矩阵联合起来,指定感兴趣模块进行分析
###turquoise???module = "turquoise"
column = match(module, modNames)#找到目标??樗诹?moduleGenes = moduleColors==module#找到模块基因所在行
sizeGrWindow(7, 7)
par(mfrow = c(1,1))
verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]),
                   abs(geneTraitSignificance[moduleGenes, 1]),
                   xlab = paste("Module Membership in", module, "module"),
                   ylab = "Gene significance for PC",
                   main = paste("Module membership vs. gene significance\n"),
                   cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module)


###brown???module = "brown"
column = match(module, modNames)#找到目标??樗诹?moduleGenes = moduleColors==module#找到??榛蛩谛?sizeGrWindow(7, 7)
par(mfrow = c(1,1))
verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]),
                   abs(geneTraitSignificance[moduleGenes, 1]),
                   xlab = paste("Module Membership in", module, "module"),
                   ylab = "Gene significance for PC",
                   main = paste("Module membership vs. gene significance\n"),
                   cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module)

image-20191121214958583
image-20191121215006188
###step 7
MEs = moduleEigengenes(datExpr, moduleColors)$eigengenes
## 只有连续型性状才能只有计算
## 这里把是否属于 Luminal 表型这个变量用0,1进行数值化。
PC = as.data.frame(design[,2]);
names(PC) = "PC"
# Add the weight to existing module eigengenes
MET = orderMEs(cbind(MEs, PC))
# Plot the relationships among the eigengenes and the trait
sizeGrWindow(5,7.5);
par(cex = 0.9)
plotEigengeneNetworks(MET, "", marDendro = c(0,4,1,2), marHeatmap = c(3,4,1,2), cex.lab = 0.8, xLabelsAngle = 90)
# Plot the dendrogram
sizeGrWindow(6,6);
par(cex = 1.0)
## ??榈木劾嗤?plotEigengeneNetworks(MET, "Eigengene dendrogram", marDendro = c(0,4,2,0),
                      plotHeatmaps = FALSE)
# Plot the heatmap matrix (note: this plot will overwrite the dendrogram plot)
par(cex = 1.0)
## 性状与??槿韧?plotEigengeneNetworks(MET, "Eigengene adjacency heatmap", marHeatmap = c(3,4,2,2),
                      plotDendrograms = FALSE, xLabelsAngle = 90)

image-20191121215014443

文章中的原图

image-20191121215025849
image-20191113010507609

最后友情宣传生信技能树

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容