class Solution(object):
def maximalSquare(self, matrix):
"""
:type matrix: List[List[str]]
:rtype: int
"""
rows, max_size = len(matrix), 0
'''
size[i]: the current number of continuous '1's in a column of matrix. Reset when discontinued.
The idea is to do a by-row scan, updating size[i]
Then check if there are continuous elements in size whose value is bigger than current maximal size.
'''
if rows > 0:
cols = len(matrix[0])
size = [0] * cols
for x in xrange(rows):
# update size
count, size = 0, map(lambda x, y: x+1 if y == '1' else 0, size, matrix[x])
for y in xrange(cols):
# find the maximum number of continuous elements bigger than max_size
if size[y] > max_size:
count += 1
#if more than current max_size value, increase max_size by one
if count > max_size:
# increase maximal size by 1
max_size += 1
break
else:
count = 0
print max_size
return max_size*max_size
221. Maximal Square
最后编辑于 :
?著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 原题 在一个二维01矩阵中找到全为1的最大正方形 样例 返回 4 解题思路 动态规划 dp[i][j]跟左上,左,...