Seaborn安装入门及常用方法

Seaborn是基于matplotlib产生的一个???,专攻于统计可视化,可以和pandas进行无缝链接,使初学者更容易上手。相对于matplotlib,Seaborn语法更简洁,两者关系类似于numpy和pandas之间的关系。

2.1安装:

1)linux系统

sudo pip install seaborn

2)window系统

pip install seaborn

2.2快速入门

import? as sns

sns.set(style="ticks")

from matplotlib import pyplot

# 加载数据集

tips = sns.load_dataset("tips")

# 绘图

sns.boxplot(x="day", y="total_bill", hue="sex", data=tips, palette="PRGn")

sns.despine(offset=10, trim=True)

#图片展示与保存

pyplot.savefig("GroupedBoxplots.png")

pyplot.show()

2.3seaborn常用方法

1、单变量分析绘图

1)分布的集中趋势,反映数据向其中心值靠?;蚓奂某潭?/p>

x = np.random.normal(size=100)

sns.distplot(x, kde=True)# kde=False关闭核密度分布, rug表示在x轴上每个观测上生成的小细条(边际毛毯)

2、观测两个变量之间的分布关系最好用散点图

1)直接拟合概率密度函数

sns.jointplot(x="x", y="y", data=df, kind="kde")

2)能够更加直观反映点的分布情况

hex图 (数据量大的时候)?

最好黑白相间

数据量大时候,用hex图,分辨出哪块更多(颜色深浅)

mean, cov = [0, 1], [(1, .5), (.5, 1)]

data = np.random.multivariate_normal(mean, cov, 200)

df = pd.DataFrame(data, columns=["x", "y"])

x, y = np.random.multivariate_normal(mean, cov, 1000).T

with sns.axes_style("ticks"):

? ? sns.jointplot(x=x, y=y, kind="hex")?

3、多变量两两显示

# 鹃尾花数据iris = sns.load_dataset("iris")

sns.pairplot(iris)

4、Seaborn可视化各种绘图操作

1、盒图 box graph

import matplotlib.pyplot as plt

import numpy as np

盒图关心中位数Q2、四分之一位Q1、四分之三位Q3和离群点?

IQR = Q3 - Q1

如果Q1-1.5IQR或者Q3+1.5IQR就是离群点

tang_data = [np.random.normal(0, std, 100) for std in range(1,4)]

fig = plt.figure(figsize=(8,6))

plt.boxplot(tang_data, vert=True, notch=True)

plt.xticks([x+1 for x in range(len(tang_data))], ['x1', 'x2', 'x3'])

plt.xlabel('x')

plt.title('box plot')

import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

2、单特征绘制直方图

1)distplot

x = np.random.normal(size=100)

sns.distplot(x, kde=False, bins=20)

2)countplot 计数图

countplot 故名思意,计数图,可将它认为一种应用到分类变量的直方图,也可认为它是用以比较类别间计数差,调用 count 函数的 barplot。

seaborn.countplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=0.75, ax=None, **kwargs)

x, y, hue: names of variables in data or vector data, optional

data: DataFrame, array, or list of arrays, optional

order, hue_order: lists of strings, optional #设置顺序

orient: “v” | “h”, optional #设置水平或者垂直显示

ax: matplotlib Axes, optional #设置子图位置,将在下节介绍绘图基础



3、分析两个特征之间的关系,利用散点图来表达

mean, cov = [0,1], [(1, .5), (.5,1)]

data = np.random.multivariate_normal(mean, cov, 200)

df = pd.DataFrame(data, columns=['X1', 'X2'])

sns.jointplot(x='X1', y='X2', data=df)

# kind = 'hex' ?# 六边形

data = np.random.multivariate_normal(mean, cov, 2000).T

with sns.axes_style('white'):

????sns.jointplot(x=data[0], y=data[1], kind='hex', color='k')

4、看两两之间变量的关系

iris = sns.load_dataset('iris')

sns.pairplot(iris)

5、条形图

sns.barplot(x='sex', y='survived', data=titanic, hue='class')

点图,不看集中趋势,就看各自的变化

sns.pointplot(x='sex', y='survived', data=titanic, hue='class')

sns.pointplot(x='class', y='survived', data=titanic, hue='sex', palette={'male':'g','female':'m'}, markers=['^', 'o'], linestyles=['-','--'])

tips = sns.load_dataset('tips', data_home='.')

# jitter 震动

sns.stripplot(x='day', y='total_bill', data=tips, jitter=True)

sns.swarmplot(x='day', y='total_bill', data=tips)

sns.swarmplot(x='day', y='total_bill', data=tips, hue='sex')

sns.swarmplot(x='day', y='total_bill', data=tips, hue='time')

6、盒图

sns.boxplot(x='day', y='total_bill', data=tips, hue='time')

7、小提琴图

sns.violinplot(x='day', y='total_bill', data=tips, hue='sex', split=True)

sns.violinplot(x='day', y='total_bill', data=tips, inner=None, split=True)

sns.swarmplot(x='day', y='total_bill', data=tips, color='k', alpha=1.0)

8、热力图通过颜色一目了然的指定值的大小,以及变化的趋势

uniform_data = np.random.rand(3,3)

sns.heatmap(uniform_data)

sns.heatmap(uniform_data, vmin=0.2, vmax=0.5)

normal_data = np.random.randn(3,3)

sns.heatmap(normal_data, center=0)

flights = sns.load_dataset('flights')

data = flights.pivot("month", "year", 'passengers')

sns.heatmap(data)

sns.heatmap(data, annot=True, fmt='d', linewidths=.5, cbar=False, cmap='YlGnBu')

9、设置画图的整体风格

def sin_plot(flip=1):

????x = np.linspace(0, 14, 100)

????for i in range(1,7):

????????plt.plot(x, np.sin(x+i*.5)*(7-i)*flip)

sin_plot()


10、有五种主题风格,darkgrid whitegrid dark white ticks

sns.set_style('darkgrid')

data = np.random.normal(size=(20,6)) + np.arange(6) / 2

sns.boxplot(data=data)

11、每一个子图的风格都可以不一样,with里面一个风格,外面一个风格

with sns.axes_style('whitegrid'):

????plt.subplot(211)

????sin_plot()

plt.subplot(212)

sin_plot(-1)

12、布局的风格

sns.set_context("paper")

plt.figure(figsize=(8,6))

sin_plot()

sns.set_context("talk")

plt.figure(figsize=(8,6))

sin_plot()

sns.set_context("poster")

plt.figure(figsize=(8,6))

sin_plot()

sns.set_context("notebook", font_scale=3.5, rc={'lines.linewidth': 4.5})

plt.figure(figsize=(8,6))

sin_plot()

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容

  • Python Data Science Handbook About Archive [图片上传中...(imag...
    榴莲气象阅读 581评论 0 1
  • # -*- coding: utf-8 -*- from __future__ import division f...
    小豆角lch阅读 1,451评论 0 1
  • 简单线性回归 import tensorflow as tf import numpy # 创造数据 x_dat...
    CAICAI0阅读 3,544评论 0 49
  • 一、概述 深度学习的一个重要手段是训练数据和训练过程的可视化,因此,我们关于深度学习的系列介绍文章就从Matplo...
    aoqingy阅读 6,147评论 0 24
  • 听说,大连今天局部地区有雨夹雪,或许是想冰敷我那受伤的肌肤。 刚刚给客户传了片子第二稿,出来吃个午饭,要的热奶茶没...
    老伯伯阅读 165评论 0 1