纵向联邦学习-HeteroBoosting

定义

在数据集上具有相同的样本空间、不同的特征空间的参与方所组成的联邦学习归类为纵向联邦学习(Vertical Federated Learning,VFL),也可以理解为按特征划分的联邦学习。

架构

1.jpg

VFL系统的训练过程一般由两部分组成:首先对齐具有相同ID,但分布于不同参与方的实体;然后基于这些已对齐的实体执行加密的(或隐私?;さ模┠P脱盗?。

  1. 第一部分:加密实体对齐

由于A方和B方公司的用户群体不同,系统使用一种基于加密的用户ID对齐技术,例如文献所描述的,来确保A方和B方不需要暴露各自的原始数据便可以对齐共同用户。在实体对齐期间,系统不会将属于某一家公司的用户暴露出来。

  1. 第二部分:加密模型训练

在确定共有实体后,各方可以使用这些共有实体的数据来协同地训练一个机器学习模型。训练过程可以被分为以下四个步骤:

  • 步骤1 协调者C创建密钥对,并将公共密钥发送给A方和B方。


    2.jpg
  • 步骤2 A方和B方对中间结果进行加密和交换。中间结果用来帮助计算梯度和损失值。
  • 步骤3 A方和B方计算加密梯度并分别加入附加掩码(additional mask)。B方还会计算加密损失。A方和B方将加密的结果发送给C方。
  • 步骤4 C方对梯度和损失信息进行解密,并将结果发送回A方和B方。A方和B方解除梯度信息上的掩码,并根据这些梯度信息来更新模型参数。

纵向联邦学习算法

安全联邦提升树 (SecureBoost)

  1. 安全的样本对齐

SecureBoost包含两个主要步骤。首先,在隐私?;は露圆斡敕街渚哂胁煌卣鞯闹氐没Ы醒径云搿H缓?,所有参与方通过隐私?;ば楣餐匮耙桓龉蚕淼奶荻忍嵘髂P?。

SecureBoost框架的第一步是实体对齐,即在所有参与方中寻找数据样本的公共集合(如共同用户),共同用户可以通过用户ID被识别出来。

  1. 训练过程

聚合统计值

3.jpg

寻找最优分割

4.jpg
5.png
6.png

预测过程

  • 步骤1 主动方查询与当前节点相关联的[参与方id,记录id]记录。基于该记录,主动方向相应参与方发送待标注样本的id和记录id,并且询问下一步的树搜索方向(即向左子节点或右子节点)。
  • 步骤2 被动方接收到待标注样本的id和记录id后,将待标注样本中相应特征的值与本地查找表中的记录[记录id,特征,阈值]中的阈值进行比较,得出下一步的树搜索方向。然后,该被动方将搜索决定发往主动方。
  • 步骤3 主动方接收到被动方传来的搜索决定,前往相应的子节点。
  • 步骤4 迭代步骤1~3,直至到达一个叶节点得到分类标签以及该标签的权值。

重复这一过程遍历所有的决策树,最终通过对从所有决策树得到的类标签进行加权求和,得到最终的类标签。

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容

  • 初识联邦学习 最早知道联邦学习是在今年6月参加的O‘Reilly AI大会上,谷歌的session介绍了他们用联邦...
    桢桢claire阅读 7,154评论 0 8
  • 案例引入 某银行A与某互联网公司B达成了企业级的合作?;チ続与银行B有着一大部分重合的用户,A有着客户上网行...
    MomodelAI阅读 11,049评论 0 3
  • 联邦学习的过程分为自治和联合两部分。 自治的部分:首先,两个或两个以上的的参与方们在各自终端安装初始化的模型,每个...
    hellompc1阅读 2,772评论 2 3
  • 联邦学习分为横向学习和纵向学习两类 1横向联邦学习 解决数据不够多的问题。双方各自有样本(特征值和标签),拥有共同...
    HJ很忙阅读 6,378评论 1 4
  • 联邦学习-笔记整理(一) 当前虽然是大数据时代,但是还我们面临如信息孤岛以及数据隐私保护等问题,很多数据无法直接汇...
    文子轩阅读 3,029评论 0 1