机器学习实战——决策树

【主要内容】

  • 决策树简介
  • 数据集中度量一致性
  • 使用递归构造决策树
  • 使用Matplotlib绘制树

【数据集度量】

  • 信息增益
    • 克劳德·香农:信息论之父
    • 熵:信息的期望值
    • 信息:l(x_i) = -logp(x_i)
    • 参考材料
      • 《信息论》香农
      • 《财富公式》威廉·庞德斯通
  • 计算数据集的熵——DONE

【划分数据集】

  • 对每一个特征划分数据集,度量划分数据集熵
  • 计算信息增益
    • g(D|A) = H(D) - H(D|A)
    • H(D|A) = sum { |D1|/|D| * H(D_1), |D1|/|D| * H(D_1) ... |Dn|/|D| * H(D_n) }
  • 选择g(D|A)最大的A
  • 划分splitData

【构建决策树】

  • 中止条件:
    • dataSet中,只有一类数据,返回该类(作为叶子);
    • dataSet中只有一种特征,返回主要类(作为叶子)
  • 找到最优特征,(通过遍历所有特征,计算并寻求最大增益熵)
  • 找到最优特征对应的feature label,生成一个root节点,设置feature label为节点标签
  • 遍历最优特征的所有特征值,对每个特征值,抽取数据集合
  • 对每一个数据子集合递归生成一个决策树,挂在当前树下
  • 返回当前tree

【绘制tree】

  • DONE
Paste_Image.png

【剪枝】chapter 9

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容

  • 简述 本章构造的决策树算法能够读取数据集合,构建类似于图3-1的决策树。决策树很多任务都 是为了数据中所蕴含的知识...
    芮芮cat阅读 374评论 0 1
  • 决策树 决策树是一个选择的过程,以树的结构来展示,其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性...
    z3r0me阅读 290评论 0 0
  • 决策树理论在决策树理论中,有这样一句话,“用较少的东西,照样可以做很好的事情。越是小的决策树,越优于大的决策树”。...
    制杖灶灶阅读 5,845评论 0 25
  • 第二章介绍的k-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据内在的含义,决策树的主要优势在于数据...
    mov觉得高数好难阅读 847评论 0 2
  • 这里开始机器学习的笔记记录。今天的这篇是一个分类方法--决策树。 决策树优点:计算复杂度不高,输出结果易于理解,对...
    七号萝卜阅读 6,441评论 0 18