DeepMind’s work in 2016: a round-up

Authors
Tuesday, 3 January 2017

Demis HassabisCo-Founder & CEO, DeepMind

Mustafa SuleymanCo-Founder & Head of Applied AI

Shane LeggCo-Founder & Chief Scientist, DeepMind

In a world of fiercely complex, emergent, and hard-to-master systems - from our climate to the diseases we strive to conquer - we believe that intelligent programs will help unearth new scientific knowledge that we can use for social benefit. To achieve this, we believe we’ll need general-purpose learning systems that are capable of developing their own understanding of a problem from scratch, and of using this to identify patterns and breakthroughs that we might otherwise miss. This is the focus of our long-term research mission at DeepMind.

While we remain a long way from anything that approximates what you or we would term intelligence, 2016 was a big year in which we made exciting progress on a number of the core underlying challenges, and saw the first glimpses of the potential for positive real-world impact.

Our program AlphaGo, for which we were lucky enough to receive our second Nature front cover, took on and beat the world champion Lee Sedol at the ancient game of Go, a feat that many experts said came a decade ahead of its time. Most exciting for us - as well as for the worldwide Go community - were AlphaGo’s displays of game-winning creativity, in some cases finding moves that challenged millennia of Go wisdom. In its ability to identify and share new insights about one of the most contemplated games of all time, AlphaGo offers a promising sign of the value AI may one day provide, and we're looking forward to playing more games in 2017.

We also made meaningful progress in the field of generative models, building programs able to imagine new constructs and scenarios for themselves. Following our PixelCNN paper on image generation, our paper on WaveNet demonstrated the usefulness of generative audio, achieving the world’s most life-like speech synthesis by imaginatively creating raw waveforms rather than stitching together samples of recorded language. We’re planning to put this into production with Google and are excited about enabling improvements to products used by millions of people.

Another important area of research is memory, and specifically the challenge of combining the decision-making aptitude of neural networks with the ability to store and reason about complex, structured data. Our work on Differentiable Neural Computers, for which we received our third Nature paper in eighteen months, demonstrated models that can simultaneously learn like neural networks as well as memorise data like computers. These models are already able to learn how to answer questions about data structures from family trees to tube maps, and bring us closer to the goal of using AI for scientific discovery in complex datasets.

As well as pushing the boundaries of what these systems can do, we’ve also invested significant time in improving how they learn. A paper titled ‘Reinforcement Learning with Unsupervised Auxiliary Tasks’ described methods to improve the speed of learning for certain tasks by an order of magnitude. And given the importance of high-quality training environments for agents, we open sourced our flagship DeepMind Lab research environment for the community, and are working with Blizzard to develop AI-ready training environments for StarCraft II as well.

Of course, this is just the tip of the iceberg, and you can read much more about our work in the many papers we published this year in top-tier journals from Neuron to PNAS and at major machine learning conferences from ICLR to NIPS. It’s amazing to see how others in the community are already actively implementing and building on the work in these papers - just look at the remarkable renaissance of Go-playing computer programs in the latter part of 2016! - and to witness the broader fields of AI and machine learning go from strength to strength.

It’s equally amazing to see the first early signs of real-world impact from this work. Our partnership with Google’s data centre team used AlphaGo-like techniques to discover creative new methods of managing cooling, leading to a remarkable 15% improvement in the buildings’ energy efficiency. If it proves possible to scale these kinds of techniques up to other large-scale industrial systems, there's real potential for significant global environmental and cost benefits. This is just one example of the work we’re doing with various teams at Google to apply our cutting-edge research to products and infrastructure used across the world. We’re also actively engaged in machine learning research partnerships with two NHS hospital groups in the UK, our home, to explore how our techniques could enable more efficient diagnosis and treatment of conditions that affect millions worldwide, as well as working with two further hospital groups on mobile apps and foundational infrastructure to enable improved care on the clinical frontlines.

Of course, the positive social impact of technology isn’t only about the real-world problems we seek to solve, but also about the way in which algorithms and models are designed, trained and deployed in general. We’re proud to have been involved in founding the Partnership on AI, which will bring together leading research labs with non-profits, civil society groups and academics to develop best practices in areas such as algorithmic transparency and safety. By fostering a diversity of experience and insight, we hope that we can help address some of these challenges and find ways to put social purpose at the heart of the AI community across the world.

We’re still a young company early in our mission, but if in 2017 we can make further simultaneous progress on these three fronts - algorithmic breakthroughs, social impact, and ethical best practice - then we'll be in good shape to make a meaningful continued contribution to the scientific community and to the world beyond.

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,454评论 0 23
  • “捐步”,相信很多人都做过的小事,所谓捐步,就是把“微信运动”统计的每日行走的步数捐出来,由有一定实力的大公司按你...
    zwj发如雪阅读 285评论 2 9
  • 都说一个人若年轻的时候就不争与淡泊,那么他此生不会有多大希望。 我并不是一个淡泊的人,每天都在想着如何成功,如何获...
    变不成猫的小狮子阅读 567评论 0 1
  • 转载请带上出处, 谢谢. 一个 Graphics Context 代表一个绘制目标, 它包含绘制系统用于完成绘制指...
    Falme丶阅读 1,789评论 0 2
  • 列队从林芝宾馆走到市委组织部会议厅,虽然有些累,但和广东的同学一起坐在会议厅里不由的就挺直了身体。 庸部长,卢巍老...
    米多桥阅读 222评论 0 0