Volatile:内存屏障原理应该没有比这篇文章讲的更清楚了

很多人知道内存屏障这个东西应该是在学习volatile时看到的,但是对内存屏障依然存在很多疑惑:为什么要加内存屏障?内存屏障能解决什么问题?为什么能解决这些问题?

最近在研究volatile的过程中发现内存屏障这东西如果不搞明白,Java中的volatile就别想学透,所以花了较长时间来研究这块??戳撕芏嘧柿?,写了很多代码测试,这篇文章就来总结下我目前认知中的内存屏障。

CPU缓存

如果你不了解讲内存屏障为什么要讲CPU缓存,接着往后看。

学过《计算机组成原理》的同学应该都听过一个词:时钟周期。什么是时钟周期呢?通俗点来讲就是CPU完成一个基本动作需要的时间周期。对硬件有点认识的同学都知道看CPU好不好一定要看的一个参数:多少多少GHZ。这个GHZ跟时钟周期之间是存在一定的换算关系的,感兴趣的同学可以去自行研究。说明一下:不了解这层换算关系不影响你看后面的内容,只要你对时钟周期有一个基本认知就可以了。

在很早以前,CPU里面是没有缓存这块区域的,就是CPU直接读写内存。那后面为什么在CPU中增加了缓存呢?因为CPU的运行效率与读写内存的效率存在着巨大的鸿沟,在读写内存过程中带来的等待浪费了很大的CPU算力。现在最新的内存是DDR4规格,但是向内存中写入数据,据权威资料,需要107个CPU时钟周期,即CPU的运行效率是写内存的107倍。如果CPU只执行写操作需要一个时钟周期,那CPU等待这个写完成需要等待106个时钟周期,是不是很浪费CPU算力?那如何解决呢?就跟我们工作中发现MySQL出现读写瓶颈如何解决是一样的思维:加缓存。

拿我们今天主流的CPU架构来说,现在的CPU主要采用三层缓存:

  1. L1、L2缓存成为本地核心内缓存,即一个核一个。如果你的机器是4核,

  2. 那就是有4个L1+4个L2

  3. L3缓存是所有核共享的。即不管你的CPU是几核,这个CPU中只有一个L3

  4. L1缓存的大小是64K,即32K指令缓存+32K数据缓存。L2是256K,L3是2M。这不是绝对的目前Intel CPU基本是这样的设计

这里还补充一个知识点:缓存行(Cache-line)。缓存行是CPU缓存存储数据的最小单位,大小为64B。这块如果展开来讲要讲很久很久,本篇文章就不展开讲了,有兴趣的朋友可以自行研究。如果你没有学习过计算机硬件相关知识,可能看不懂。

根据哲学的矛盾相对论:任何问题的解决方案都是一个利与弊共存的矛盾体。加缓存的确有效提升了CPU的执行效率,但是CPU缓存间的数据一致性、CPU缓存与内存间的数据一致性就是不得不去思考与解决的问题了。而且还得保证解决这两层数据一致性的效率要高于不加缓存前浪费的CPU算力,不然这个方案就是一套伪方案:听起来高大上,不解决问题。

image

缓存的一致性

MESI协议就是为了保证CPU各核的缓存、内存间的数据一致性而生的,没有了解过的可以百度普及一下,这个比较简单。这里拓展两点:

一、CPU运算单元与L1缓存间为什么要增加buffer?CPU实现各个核的缓存与内存间的数据一致性的思路有点像socket的三次握手:CPU0修改了某个数据,需要广播告诉其他CPU,这时候CPU0进入阻塞状态等待其他CPU修改其缓存中的状态,待其他CPU都修改完状态返回应答消息后才进入运行状态。虽然这个阻塞的时间很短,但是在CPU的时间里就很长了,为了保证这部分阻塞时间也能得到充分利用,于是加入了buffer。将预读信息存储进去,这样CPU解除阻塞后就可以直接从buffer拿出请求处理。

二、MESI协议的实现思路是:如果CPU0修改了某个数据,需要广播给其他CPU,缓存中没有这个数据的CPU丢弃这个广播消息,缓存中有这个数据的CPU监听到这个广播后会将相应的缓存行改为invalid状态,这样CPU在下次读取这个数据的时候发现缓存行失效,就去内存中读取。这里面童鞋们有没有发现一个问题:只要存在数据修改,CPU就需要去内存取数据,那为什么不实现CPU缓存能共享数据呢?这样CPU在下次读取的时候去CPU0的缓存行去读取就可以啦,而且性能更高。现在的CPU也的确实现了这个思路,对应的协议就是:AMD的MOESI、Intel的MESIF。

image

内存屏障的由来

对于CPU的写,目前主流策略有两种:

1、write back:即CPU向内存写数据时,先把真实数据放入store buffer中,待到某个合适的时间点,CPU才会将store buffer中的数据刷到内存中,而且这两个操作是异步的。这在多线程环境中,有些情况下是可以接受的,但是有些情况是不可接受的,为了让程序员有能力根据业务需要达到同步完成,就设计了内存屏障。

2、write through:即CPU向内存写数据时,同步完成写store buffer与内存。

当前CPU大多数采用的是write back策略??赡苡型柿耍何裁茨兀恳蛭蠖嗍榭鱿?,CPU异步完成写内存产生的部分延迟是可以接受的,而且这个延迟极短。只有在多线程环境下需要严格保证内存可见等极少数特殊情况下才需要保证CPU的写在外界看来是同步完成的,需要借助CPU提供的内存屏障实现。如果直接采用策略2:write through,那每次写内存都需要等待数据刷入内存,极大影响了CPU的执行效率。

内存屏障实现思路

为什么要插入屏障?本质是业务层面不能接受写store buffer与刷回内存这两个异步操作产生的哪怕是极少的延迟,即对内存可见性的要求极高。

内存屏障到底是什么?内存屏障什么都不是,它只是一个抽象概念,就像OOP。如果这样说你不理解,那你把他理解成一堵墙,这堵墙正面与反面的指令无法被CPU乱序执行及这堵墙正面与反面的读写操作需有序执行。

CPU提供了三个汇编指令串行化运行读写指令达到实现保证读写有序性的目的:

SFENCE:在该指令前的写操作必须在该指令后的写操作前完成

LFENCE:在该指令前的读操作必须在该指令后的读操作前完成

MFENCE:在该指令前的读写操作必须在该指令后的读写操作前完成

何谓串行化?你可以理解成CPU把读、写、读写请求放入了一个队列,按照先进先出的顺序执行下去;何谓读操作完成,即CPU执行一次读操作,把值读到了寄存器中;何谓写操作完成,即CPU执行一次写操作,数据刷到内存中了。

结语

本篇文章涉及到大量硬件知识,无法通过阅读源码或写代码去验证。

Java的volatile在实现层面用的不是fence族屏障,而是lock。lock是如何实现屏障效果的呢?JVM为什么不用fence族呢?这两个问题我会放到下篇文章中详解。
喜欢本篇文章请关注+转发支持下小编哦,对文章中的观点有不理解的也欢迎留言到评论区,小编看到将会为大家详细解答。

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351