记得那是个中午,我坐在图书馆的自习座位上,调节了下我略带模糊的视力,伸展了略带疲惫的筋骨,书签夹在了《普林斯顿微积分读本》的第十六章。是的,我已经看完了前十五章的内容,我的荧光笔已经扫过了书上前300页的内容。(是的,你并没有看错,不是《普林斯顿历史》,也不是什么新奇小说,就是一本厚厚的数学书)
相遇
年初开始看这本书,刚开始拿到手感觉好厚啊,600多页,这怎么能看得完?!而且我曾经对数学有种恐惧感,令我始终摆脱不了这样的情形,于是我抱着忐忑的心情,翻开了这本书....
相知
翻开这本书的前言,我被这幽默风趣的开头语逗笑了,感觉我不像是翻开了一本数学书,而是故事书。
全书共30个篇章,外加两个附录,主要是对一些重要的定理进行证明。30个篇章从最基本的函数图像、极限、导数等进行讲起,再到后来微分方程和积分的方法。从每篇文章的编排和作者的表述可以看出作者数学功底的深厚,深入浅出的介绍了各种求导方法和证明极限的过程。在此我突然想起我曾经看过的一本书《什么是数学》上的一句话,大致意思是:有些作者总喜欢把简单的问题或者定理复杂化,以显示自己的博学多才和深厚的学术功底,却不知道能把复杂的问题简单化才是真正的本事。所以我很庆幸自己遇到了后一位。这本书还有一个最大的不同在于,读其他的数学书感觉像是单方面通信,对方在发送信息,我就一直接收;然而这本书给我的感觉是在和作者进行平等的交流,我猜测他在写数学书的同时也研习过心理学,不然我在看这本书的过程中的心理变化作者怎么会判断的如此准确并给予了适当的提醒呢?
与数学相识的过程
记得我是从小学六年级开始对数学感兴趣,尤其喜欢代数式的化简与计算,那时候的我很单纯,就想着把眼前的一道道题目解答好就很开心了。就像去AC一道道编程题,喜欢寻找那瞬间AC通过的快感,解数学题也一样,当我看着把很长的一段多项式化简为一个整数1或0时,就会油然产生一种成就感。直到高一,因为每天有大量的数学课后作业要做,我来不及享受数学带给我的快乐,转眼就被各种作业压力所吞没,使我有很长一段时间惧怕数学。到了大学,高等数学课程也是在恍恍惚惚间略过,结课后就扔在了书架不起眼的角落里。
这就是我与数学爱恨交织的过程,我曾想过再重新开始,却发现当我拿起我的高数课本时竟然感到如此陌生,看了半天内心也丝毫没有当年的感觉。
所以我很感激这本书的出现,让我坚持像打鸡血一样找到了最初的激动感,并感到微积分也不是这么难的。这本书现在放在了我书架上最显眼的位置,每天都会抽出来翻一翻,虽然已经看完了一半,但我知道我的数学求学路还会继续走下去!
最后献上一首数学情诗^_^ (注:此诗出自网络)
拉格朗日,傅立叶旁,
我凝视你凹函数般的脸庞。
微分了忧伤, 积分了希望,
我要和你追逐黎曼最初的梦想。
感情已发散,收敛难挡,
没有你的极限,柯西抓狂。
我的心已成自变量,
函数因你波起波荡。
低阶的有限阶的,
一致的不一致的,
是我想你的皮亚诺余项。
狄利克雷,勒贝格、杨 ,
一同仰望莱布尼茨的肖像,
拉贝、泰勒,无穷小量,
是长廊里麦克劳林的吟唱。
打破了确界,你来我身旁,
温柔抹去我,阿贝尔的伤。
我的心已成自变量,
函数因你波起波荡。
低阶的有限阶的,
一致的不一致的,
是我想你的皮亚诺余项。