卷积神经网络原理

卷积神经网络三个结构

神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层)以及激活层。每一层的作用

  • 卷积层:通过在原始图像上平移来提取特征
  • 激活层:增加非线性分割能力
  • 池化层:通过特征后稀疏参数来减少学习的参数,降低网络的复杂度,(最大池化和平均池化)

为了能够达到分类效果,还会有一个全连接层(FC)也就是最后的输出层,进行损失计算分类。

卷积层

卷积层(Convolutional layer),卷积神经网络中每层卷积层由若干卷积单元(卷积核)组成,每个卷积单元的参数都是通过反向传播算法最佳化得到的。
卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网路能从低级特征中迭代提取更复杂的特征。

卷积核(Filter)的四大要素

  • 卷积核个数
  • 卷积核大小
  • 卷积核步长
  • 卷积核零填充大小

卷积如何计算-大小

卷积核我们可以理解为一个观察的人,带着若干权重和一个偏置去观察,进行特征加权运算。


注:上述要加上偏置

卷积核大小 ---> 11、33、5*5
通常卷积核大小选择这些大小,是经过研究人员证明比较好的效果。这个人观察之后会得到一个运算结果,

那么这个人想观察所有这张图的像素怎么办?那就需要这样


卷积如何计算-步长

需要去移动卷积核观察这张图片,需要的参数就是步长。
假设移动的步长为一个像素,那么最终这个人观察的结果以下图为例:
5x5的图片,3x3的卷积大小去一个步长运算得到3x3的大小观察结果



如果移动的步长为2那么结果是这样

  • 5x5的图片,3x3的卷积大小去两个步长运算得到2x2的大小观察结果


卷积如何计算-卷积核个数

那么如果在某一层结构当中,不止是一个人观察,多个人(卷积核)一起去观察。那就得到多张观察结果。

  • 不同的卷积核带的权重和偏置都不一样,即随机初始化的参数

我们已经得出输出结果的大小有大小和步长决定的,但是只有这些吗,还有一个就是零填充。Filter观察窗口的大小和移动步长会导致超过图片像素宽度!

卷积如何计算-零填充大小

零填充就是在图片像素外围填充一圈值为0的像素。


有两种方式,SAME和VALID

  • SAME:越过边缘取样,取样的面积和输入图像的像素宽度一致。
  • VALID:不越过边缘取样,取样的面积小于输入人的图像的像素宽度。

在Tensorflow当中,卷积API设置”SAME”之后,输出高宽与输入大小一样(重要)

总结-输出大小计算公式

最终零填充到底填充多少呢?我们并不需要去关注,接下来我们利用已知的这些条件来去求出输出的大小来看结果

通过一个例子来理解下面的公式

计算案例:
1、假设已知的条件:输入图像32321, 50个Filter,大小为55,移动步长为1,零填充大小为1。请求出输出大???
H2 = (H1 - F + 2P)/S + 1 = (32 - 5 + 2 * 1)/1 + 1 = 30
W2 = (H1 - F + 2P)/S + 1 = (32 -5 + 2 * 1)/1 + 1 = 30
D2 = K = 50
所以输出大小为[30, 30, 50]
2、假设已知的条件:输入图像32
321, 50个Filter,大小为33,移动步长为1,未知零填充。输出大小3232?
H2 = (H1 - F + 2P)/S + 1 = (32 - 3 + 2 * P)/1 + 1 = 32
W2 = (H1 - F + 2P)/S + 1 = (32 -3 + 2 * P)/1 + 1 = 32
所以零填充大小为:1
1

多通道图片如何观察

如果是一张彩色图片,那么就有三种表分别为R,G,B。原本每个人需要带一个3x3或者其他大小的卷积核,现在需要带3张3x3的权重和一个偏置,总共就27个权重。最终每个人还是得出一张结果

卷积网络API

tf.nn.conv2d(input, filter, strides=, padding=, name=None)

  • 计算给定4-D input和filter张量的2维卷积
  • input:给定的输入张量,具有[batch,heigth,width,channel],类型为float32,64
  • filter:指定过滤器的权重数量,[filter_height, filter_width, in_channels, out_channels]
  • strides:strides = [1, stride, stride, 1],步长
  • padding:“SAME”, “VALID”,使用的填充算法的类型,使用“SAME”。其中”VALID”表示滑动超出部分舍弃,“SAME”表示填充,使得变化后height,width一样大

小结

1、已知固定输出大小,反过来求出零填充,已知零填充,根据步长等信息,求出输出大小
2、卷积层过滤器(卷积核)大小,三个选择1x1,3x3,5x5,步长一般都为1,过滤器个数不定,不同结构选择不同,
3、每个过滤器会带有若干权重和1个偏置

激活函数

卷积网络结构采用激活函数,自从网路得到发展之后。大家发现原有的sigmoid这些激活函数并不能达到好的效果,所以采取新的激活函数。

Relu



效果是什么样的呢?


playground演示不同激活函数作用

网址:http://playground.tensorflow.org/

  • Relu
  • Tanh
  • sigmoid

为什么采取的新的激活函数

Relu优点

  • 有效解决梯度爆炸问题
  • 计算速度非???,只需要判断输入是否大于0。SGD(批梯度下降)的求解速度速度远快于sigmoid和tanh

sigmoid缺点

  • 采用sigmoid等函数,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。在深层网络中,sigmoid函数 反向传播 时,很容易就会出现梯度梯度爆炸的情况

激活函数API

tf.nn.relu(features, name=None)

  • features:卷积后加上偏置的结果
  • return:结果

池化层(Polling)

Pooling层主要的作用是特征提取,通过去掉Feature Map中不重要的样本,进一步减少参数数量。Pooling的方法很多,通常采用最大池化

  • max_polling:取池化窗口的最大值
  • avg_polling:取池化窗口的平均值


池化层计算

池化层也有窗口的大小以及移动步长,那么之后的输出大小怎么计算?计算公式同卷积计算公式一样

计算:224x224x64,窗口为2,步长为2输出结果?
H2 = (224 - 2 + 20)/2 +1 = 112
w2 = (224 - 2 + 2
0)/2 +1 = 112

通常池化层采用 2x2大小、步长为2窗口

池化层API

tf.nn.max_pool(value, ksize=, strides=, padding=,name=None)
  • 输入上执行最大池数
  • value:4-D Tensor形状[batch, height, width, channels]
  • channel:并不是原始图片的通道数,而是多少filter观察
  • ksize:池化窗口大小,[1, ksize, ksize, 1]
  • strides:步长大小,[1,strides,strides,1]
  • padding:“SAME”, “VALID”,使用的填充算法的类型,默认使用“SAME”

Full Connection层

前面的卷积和池化相当于做特征工程,最后的全连接层在整个卷积神经网络中起到“分类器”的作用。

卷积神经网络总结

面试题

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351