高级语言通常都内置了一套try...except...finally...的错误处理机制,Python也不例外。
1. 错误处理
try
让我们用一个例子来看看try的机制:
try:
print('try...')
r = 10 / 0
print('result:', r)
except ZeroDivisionError as e:
print('except:', e)
finally:
print('finally...')
print('END')
当我们认为某些代码可能会出错时,就可以用try来运行这段代码,如果执行出错,则后续代码不会继续执行,而是直接跳转至错误处理代码,即except
语句块,执行完except后,如果有finally
语句块,则执行finally
语句块,至此,执行完毕。
上面的代码在计算10 / 0时会产生一个除法运算错误:
try...
except: division by zero
finally...
END
从输出可以看到,当错误发生时,后续语句print('result:', r)
不会被执行,except
由于捕获到ZeroDivisionError
,因此被执行。最后,finally语句被执行。然后,程序继续按照流程往下走。
如果把除数0改成2,则执行结果如下:
try...
result: 5
finally...
END
由于没有错误发生,所以except
语句块不会被执行,但是finally如果有,则一定会被执行(可以没有finally语句)。
你还可以猜测,错误应该有很多种类,如果发生了不同类型的错误,应该由不同的except语句块处理。没错,可以有多个except来捕获不同类型的错误:
try:
print('try...')
r = 10 / int('a')
print('result:', r)
except ValueError as e:
print('ValueError:', e)
except ZeroDivisionError as e:
print('ZeroDivisionError:', e)
finally:
print('finally...')
print('END')
int()
函数可能会抛出ValueError
,所以我们用一个except
捕获ValueError
,用另一个except
捕获ZeroDivisionError
。
此外,如果没有错误发生,可以在except
语句块后面加一个else
,当没有错误发生时,会自动执行else
语句:
try:
print('try...')
r = 10 / int('2')
print('result:', r)
except ValueError as e:
print('ValueError:', e)
except ZeroDivisionError as e:
print('ZeroDivisionError:', e)
else:
print('no error!')
finally:
print('finally...')
print('END')
Python的错误其实也是class,所有的错误类型都继承自BaseException
,所以在使用except时需要注意的是,它不但捕获该类型的错误,还把其子类也“一网打尽”。比如:
try:
foo()
except ValueError as e:
print('ValueError')
except UnicodeError as e:
print('UnicodeError')
第二个except
永远也捕获不到UnicodeError
,因为UnicodeError
是ValueError
的子类,如果有,也被第一个except
给捕获了。
Python所有的错误都是从BaseException
类派生的,常见的错误类型和继承关系看这里:
链接
使用try...except
捕获错误还有一个巨大的好处,就是可以跨越多层调用,比如函数main()
调用foo()
,foo()
调用bar()
,结果bar()
出错了,这时,只要main()
捕获到了,就可以处理:
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
try:
bar('0')
except Exception as e:
print('Error:', e)
finally:
print('finally...')
也就是说,不需要在每个可能出错的地方去捕获错误,只要在合适的层次去捕获错误就可以了。这样一来,就大大减少了写try...except...finally
的麻烦。
调用堆栈
如果错误没有被捕获,它就会一直往上抛,最后被Python解释器捕获,打印一个错误信息,然后程序退出。来看看err.py
:
# err.py:
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
bar('0')
main()
执行,结果如下:
$ python3 err.py
Traceback (most recent call last):
File "err.py", line 11, in <module>
main()
File "err.py", line 9, in main
bar('0')
File "err.py", line 6, in bar
return foo(s) * 2
File "err.py", line 3, in foo
return 10 / int(s)
ZeroDivisionError: division by zero
出错并不可怕,可怕的是不知道哪里出错了。解读错误信息是定位错误的关键。我们从上往下可以看到整个错误的调用函数链:
错误信息第1行:
Traceback (most recent call last):
告诉我们这是错误的跟踪信息。
第2~3行:
File "err.py", line 11, in <module>
main()
调用main()
出错了,在代码文件err.py的第11行代码,但原因是第9行:
File "err.py", line 9, in main
bar('0')
调用bar('0')
出错了,在代码文件err.py
的第9行代码,但原因是第6行:
File "err.py", line 6, in bar
return foo(s) * 2
原因是return foo(s) * 2
这个语句出错了,但这还不是最终原因,继续往下看:
File "err.py", line 3, in foo
return 10 / int(s)
原因是return 10 / int(s)
这个语句出错了,这是错误产生的源头,因为下面打印了:
ZeroDivisionError: integer division or modulo by zero
根据错误类型ZeroDivisionError
,我们判断,int(s)
本身并没有出错,但是int(s)
返回0,在计算10 / 0时出错,至此,找到错误源头。
记录错误
如果不捕获错误,自然可以让Python解释器来打印出错误堆栈,但程序也被结束了。既然我们能捕获错误,就可以把错误堆栈打印出来,然后分析错误原因,同时,让程序继续执行下去。
Python内置的logging??榭梢苑浅H菀椎丶锹即砦笮畔ⅲ?/p>
# err_logging.py
import logging
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
try:
bar('0')
except Exception as e:
logging.exception(e)
main()
print('END')
同样是出错,但程序打印完错误信息后会继续执行,并正常退出:
$ python3 err_logging.py
ERROR:root:division by zero
Traceback (most recent call last):
File "err_logging.py", line 13, in main
bar('0')
File "err_logging.py", line 9, in bar
return foo(s) * 2
File "err_logging.py", line 6, in foo
return 10 / int(s)
ZeroDivisionError: division by zero
END
通过配置,logging还可以把错误记录到日志文件里,方便事后排查。
抛出错误
因为错误是class,捕获一个错误就是捕获到该class的一个实例。因此,错误并不是凭空产生的,而是有意创建并抛出的。Python的内置函数会抛出很多类型的错误,我们自己编写的函数也可以抛出错误。
如果要抛出错误,首先根据需要,可以定义一个错误的class,选择好继承关系,然后,用raise语句抛出一个错误的实例:
# err_raise.py
class FooError(ValueError):
pass
def foo(s):
n = int(s)
if n==0:
raise FooError('invalid value: %s' % s)
return 10 / n
foo('0')
执行,可以最后跟踪到我们自己定义的错误:
$ python3 err_raise.py
Traceback (most recent call last):
File "err_throw.py", line 11, in <module>
foo('0')
File "err_throw.py", line 8, in foo
raise FooError('invalid value: %s' % s)
__main__.FooError: invalid value: 0
只有在必要的时候才定义我们自己的错误类型。如果可以选择Python已有的内置的错误类型(比如ValueError,TypeError),尽量使用Python内置的错误类型。
最后,我们来看另一种错误处理的方式:
# err_reraise.py
def foo(s):
n = int(s)
if n==0:
raise ValueError('invalid value: %s' % s)
return 10 / n
def bar():
try:
foo('0')
except ValueError as e:
print('ValueError!')
raise
bar()
在bar()
函数中,我们明明已经捕获了错误,但是,打印一个ValueError!
后,又把错误通过raise
语句抛出去了,这不有病么?
其实这种错误处理方式不但没病,而且相当常见。捕获错误目的只是记录一下,便于后续追踪。但是,由于当前函数不知道应该怎么处理该错误,所以,最恰当的方式是继续往上抛,让顶层调用者去处理。好比一个员工处理不了一个问题时,就把问题抛给他的老板,如果他的老板也处理不了,就一直往上抛,最终会抛给CEO去处理。
raise语句如果不带参数,就会把当前错误原样抛出。此外,在except中raise
一个`Error,还可以把一种类型的错误转化成另一种类型:
try:
10 / 0
except ZeroDivisionError:
raise ValueError('input error!')
只要是合理的转换逻辑就可以,但是,决不应该把一个IOError
转换成毫不相干的ValueError
。
小结
Python内置的try...except...finally
用来处理错误十分方便。出错时,会分析错误信息并定位错误发生的代码位置才是最关键的。
程序也可以主动抛出错误,让调用者来处理相应的错误。但是,应该在文档中写清楚可能会抛出哪些错误,以及错误产生的原因。
2.调试
断言
凡是用print()
来辅助查看的地方,都可以用断言(assert)来替代:
def foo(s):
n = int(s)
assert n != 0, 'n is zero!'
return 10 / n
def main():
foo('0')
assert
的意思是,表达式n != 0
应该是True,否则,根据程序运行的逻辑,后面的代码肯定会出错。
如果断言失败,assert语句本身就会抛出AssertionError
:
$ python3 err.py
Traceback (most recent call last):
...
AssertionError: n is zero!
程序中如果到处充斥着assert,和print()相比也好不到哪去。不过,启动Python解释器时可以用-O
参数来关闭assert:
$ python3 -O err.py
Traceback (most recent call last):
...
ZeroDivisionError: division by zero
关闭后,你可以把所有的assert
语句当成pass
来看。
logging
把print()
替换为logging
是第3种方式,和assert比,logging
不会抛出错误,而且可以输出到文件:
import logging
s = '0'
n = int(s)
logging.info('n = %d' % n)
print(10 / n)
logging.info()
就可以输出一段文本。运行,发现除了ZeroDivisionError
,没有任何信息。怎么回事?
别急,在import logging
之后添加一行配置再试试:
import logging
logging.basicConfig(level=logging.INFO)
看到输出了:
$ python3 err.py
INFO:root:n = 0
Traceback (most recent call last):
File "err.py", line 8, in <module>
print(10 / n)
ZeroDivisionError: division by zero
这就是logging的好处,它允许你指定记录信息的级别,有debug
,info
,warning
,error
等几个级别,当我们指定level=INFO
时,logging.debug
就不起作用了。同理,指定level=WARNING
后,debug
和info
就不起作用了。这样一来,你可以放心地输出不同级别的信息,也不用删除,最后统一控制输出哪个级别的信息。
logging
的另一个好处是通过简单的配置,一条语句可以同时输出到不同的地方,比如console
和文件。
pdb
第4种方式是启动Python的调试器pdb,让程序以单步方式运行,可以随时查看运行状态。我们先准备好程序:
# err.pys = '0'n = int(s)print(10 / n)
然后启动:
$ python3 -m pdb err.py> /Users/michael/Github/learn-python3/samples/debug/err.py(2)<module>()-> s = '0'
以参数-m pdb
启动后,pdb
定位到下一步要执行的代码-> s = '0'
。输入命令l
来查看代码:
(Pdb) l 1 # err.py 2 -> s = '0' 3 n = int(s) 4 print(10 / n)
输入命令n
可以单步执行代码:
(Pdb) n> /Users/michael/Github/learn-python3/samples/debug/err.py(3)<module>()-> n = int(s)(Pdb) n> /Users/michael/Github/learn-python3/samples/debug/err.py(4)<module>()-> print(10 / n)
任何时候都可以输入命令p
变量名
来查看变量:
(Pdb) p s'0'
(Pdb) p n0
输入命令q
结束调试,退出程序:
(Pdb) q
这种通过pdb在命令行调试的方法理论上是万能的,但实在是太麻烦了,如果有一千行代码,要运行到第999行得敲多少命令啊?;购?,我们还有另一种调试方法。
pdb.set_trace()
这个方法也是用pdb,但是不需要单步执行,我们只需要import pdb
,然后,在可能出错的地方放一个pdb.set_trace()
,就可以设置一个断点:
# err.py
import pdb
s = '0'
n = int(s)
pdb.set_trace() # 运行到这里会自动暂停
print(10 / n)
运行代码,程序会自动在pdb.set_trace()
暂停并进入pdb调试环境,可以用命令p查看变量,或者用命令c继续运行:
$ python3 err.py
> /Users/michael/Github/learn-python3/samples/debug/err.py(7)<module>()
-> print(10 / n)
(Pdb) p n
0
(Pdb) c
Traceback (most recent call last):
File "err.py", line 7, in <module>
print(10 / n)
ZeroDivisionError: division by zero
这个方式比直接启动pdb单步调试效率要高很多,但也高不到哪去。
小结
写程序最痛苦的事情莫过于调试,程序往往会以你意想不到的流程来运行,你期待执行的语句其实根本没有执行,这时候,就需要调试了。
虽然用IDE调试起来比较方便,但是最后你会发现,logging
才是终极武器。
3.单元测试
单元测试
阅读: 128979
如果你听说过“测试驱动开发”(TDD:Test-Driven Development),单元测试就不陌生。
单元测试是用来对一个???、一个函数或者一个类来进行正确性检验的测试工作。
比如对函数abs()
,我们可以编写出以下几个测试用例:
输入正数,比如1
、1.2
、0.99
,期待返回值与输入相同;
输入负数,比如-1
、-1.2
、-0.99
,期待返回值与输入相反;
输入0,期待返回0;
输入非数值类型,比如None
、[]
、{}
,期待抛出TypeError
。
把上面的测试用例放到一个测试模块里,就是一个完整的单元测试。
单元测试通过后有什么意义呢?如果我们对abs()
函数代码做了修改,只需要再跑一遍单元测试,如果通过,说明我们的修改不会对abs()
函数原有的行为造成影响,如果测试不通过,说明我们的修改与原有行为不一致,要么修改代码,要么修改测试。
这种以测试为驱动的开发模式最大的好处就是确保一个程序模块的行为符合我们设计的测试用例。在将来修改的时候,可以极大程度地保证该??樾形匀皇钦返?。
我们来编写一个Dict
类,这个类的行为和dict
一致,但是可以通过属性来访问,用起来就像下面这样:
>>> d = Dict(a=1, b=2)
>>> d['a']
1
>>> d.a
1
mydict.py
代码如下:
class Dict(dict):
def __init__(self, **kw):
super().__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
为了编写单元测试,我们需要引入Python自带的unittest
模块,编写mydict_test.py
如下:
import unittest
from mydict import Dict
class TestDict(unittest.TestCase):
def test_init(self):
d = Dict(a=1, b='test')
self.assertEqual(d.a, 1)
self.assertEqual(d.b, 'test')
self.assertTrue(isinstance(d, dict))
def test_key(self):
d = Dict()
d['key'] = 'value'
self.assertEqual(d.key, 'value')
def test_attr(self):
d = Dict()
d.key = 'value'
self.assertTrue('key' in d)
self.assertEqual(d['key'], 'value')
def test_keyerror(self):
d = Dict()
with self.assertRaises(KeyError):
value = d['empty']
def test_attrerror(self):
d = Dict()
with self.assertRaises(AttributeError):
value = d.empty
编写单元测试时,我们需要编写一个测试类,从unittest.TestCase
继承。
以test
开头的方法就是测试方法,不以test
开头的方法不被认为是测试方法,测试的时候不会被执行。
对每一类测试都需要编写一个test_xxx()
方法。由于unittest.TestCase
提供了很多内置的条件判断,我们只需要调用这些方法就可以断言输出是否是我们所期望的。最常用的断言就是assertEqual()
:
self.assertEqual(abs(-1), 1) # 断言函数返回的结果与1相等
另一种重要的断言就是期待抛出指定类型的Error,比如通过d['empty']
访问不存在的key时,断言会抛出KeyError
:
with self.assertRaises(KeyError):
value = d['empty']
而通过d.empty
访问不存在的key
时,我们期待抛出
AttributeError:
with self.assertRaises(AttributeError):
value = d.empty
运行单元测试
一旦编写好单元测试,我们就可以运行单元测试。最简单的运行方式是在mydict_test.py
的最后加上两行代码:
if __name__ == '__main__':
unittest.main()
这样就可以把mydict_test.py
当做正常的python脚本运行:
$ python3 mydict_test.py
另一种方法是在命令行通过参数-m unittest
直接运行单元测试:
$ python3 -m unittest mydict_test
.....
----------------------------------------------------------------------
Ran 5 tests in 0.000s
OK
这是推荐的做法,因为这样可以一次批量运行很多单元测试,并且,有很多工具可以自动来运行这些单元测试。
setUp与tearDown
可以在单元测试中编写两个特殊的setUp()
和tearDown()
方法。这两个方法会分别在每调用一个测试方法的前后分别被执行。
setUp()
和tearDown()
方法有什么用呢?设想你的测试需要启动一个数据库,这时,就可以在setUp()
方法中连接数据库,在tearDown()
方法中关闭数据库,这样,不必在每个测试方法中重复相同的代码:
class TestDict(unittest.TestCase):
def setUp(self):
print('setUp...')
def tearDown(self):
print('tearDown...')
可以再次运行测试看看每个测试方法调用前后是否会打印出setUp...
和tearDown...
。
小结
单元测试可以有效地测试某个程序??榈男形俏蠢粗毓勾氲男判谋V?。
单元测试的测试用例要覆盖常用的输入组合、边界条件和异常。
单元测试代码要非常简单,如果测试代码太复杂,那么测试代码本身就可能有bug。
单元测试通过了并不意味着程序就没有bug了,但是不通过程序肯定有bug。
4. 文档测试
如果你经常阅读Python的官方文档,可以看到很多文档都有示例代码。比如re???/a>就带了很多示例代码:
>>> import re
>>> m = re.search('(?<=abc)def', 'abcdef')
>>> m.group(0)
'def'
可以把这些示例代码在Python的交互式环境下输入并执行,结果与文档中的示例代码显示的一致。
这些代码与其他说明可以写在注释中,然后,由一些工具来自动生成文档。既然这些代码本身就可以粘贴出来直接运行,那么,可不可以自动执行写在注释中的这些代码呢?
答案是肯定的。
当我们编写注释时,如果写上这样的注释:
def abs(n):
'''
Function to get absolute value of number.
Example:
>>> abs(1)
1
>>> abs(-1)
1
>>> abs(0)
0
'''
return n if n >= 0 else (-n)
无疑更明确地告诉函数的调用者该函数的期望输入和输出。
并且,Python内置的“文档测试”(doctest)??榭梢灾苯犹崛∽⑹椭械拇氩⒅葱胁馐?。
doctest
严格按照Python交互式命令行的输入和输出来判断测试结果是否正确。只有测试异常的时候,可以用...表示中间一大段烦人的输出。
让我们用doctest
来测试上次编写的Dict
类:
# mydict2.py
class Dict(dict):
'''
Simple dict but also support access as x.y style.
>>> d1 = Dict()
>>> d1['x'] = 100
>>> d1.x
100
>>> d1.y = 200
>>> d1['y']
200
>>> d2 = Dict(a=1, b=2, c='3')
>>> d2.c
'3'
>>> d2['empty']
Traceback (most recent call last):
...
KeyError: 'empty'
>>> d2.empty
Traceback (most recent call last):
...
AttributeError: 'Dict' object has no attribute 'empty'
'''
def __init__(self, **kw):
super(Dict, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
if __name__=='__main__':
import doctest
doctest.testmod()
运行python3 mydict2.py:
$ python3 mydict2.py
什么输出也没有。这说明我们编写的doctest运行都是正确的。如果程序有问题,比如把__getattr__()
方法注释掉,再运行就会报错:
$ python3 mydict2.py
**********************************************************************
File "/Users/michael/Github/learn-python3/samples/debug/mydict2.py", line 10, in __main__.Dict
Failed example:
d1.x
Exception raised:
Traceback (most recent call last):
...
AttributeError: 'Dict' object has no attribute 'x'
**********************************************************************
File "/Users/michael/Github/learn-python3/samples/debug/mydict2.py", line 16, in __main__.Dict
Failed example:
d2.c
Exception raised:
Traceback (most recent call last):
...
AttributeError: 'Dict' object has no attribute 'c'
**********************************************************************
1 items had failures:
2 of 9 in __main__.Dict
***Test Failed*** 2 failures.