This is the user manual of a paper named "An Open-Source Toolbox with Classical Classifiers for Electricity Theft Detection"?
1.?English version manual
Download the toolbox linek:? https://pan.baidu.com/s/1j-mmnNbwkd7nKSeJb3Rrkg
password: 1234
It includes four files.?After the user selects all the files, tap the Download button.
Toolbox:?A group of .fig files with the graphical user interface (GUI) and a set of .m files with basic codes of the data generator and classical classifiers.
Raw data:?real household power load profiles from block 1 of?smart meters in low carbon London.
Generated data:?The authors have used the raw data to generate the dataset. The user can use the author's data.
Original codes:??a set of .m files. Toolbox is relatively inflexible, and users can modify the structure of the classifier with source code.
Video Instructions links:?https://www.bilibili.com/video/BV1ZU4y1A7HS?spm_id_from=333.999.0.0
If you have any questions, you can email me at: 851282212@qq.com
2.?Chinese version manual(中文版用户手册)
这是“An Open-Source Toolbox with Classical Classifiers for Electricity Theft Detection”这篇会议论文的用户说明书。教读者如何利用工具箱生成窃电数据集。
工具箱下载链接:?https://pan.baidu.com/s/1j-mmnNbwkd7nKSeJb3Rrkg
密码: 1234
它包括4个子文件,点击下载即可。
Toolbox:?一组GUI文件和对应的m文件。这是工具箱的全部文件。
Raw data:?伦敦智能电表数据集中的其中一个数据,来源于第1个街区。
Generated data:这是作者事前,用raw data生成的数据集。读者可以用这个数据集。
Original codes:??由于toolbox中的分类器网络结构没那么灵活,读者可以对源代码进行直接修改。
中文版视频操作手册链接: https://www.bilibili.com/video/BV1Cf4y1F7HZ?spm_id_from=333.999.0.0
假如你有疑问,可以发邮件给我:851282212@qq.com