Google 医疗 AI 新成果:用深度学习分析电子病历,预测患者病情发展

Scalable and accurate deep learning with electronic health records

image

本文译自Google Blog,作者为Google AI产品经理Eyal Oren博士和研究科学家Alvin Rajkomar博士。

患者入院后,对接下来的事情总是充满担忧。他们会在心里不断问自己,我什么时候可以回家?我会好起来吗?我还要再回医院吗?准确回答这些问题有助于医生和护士更加周到、安全和高效地护理患者——一旦患者的健康状况恶化,医生和护士可以抢先主动采取措施。

如今利用机器学习预测事态发展已经非常普遍。我们可以用它预测通勤途中的交通状况,以及将英文翻译成西班牙语时需要用到的词汇。那么,我们是否可以用相同类型的机器学习进行临床预测呢?我们认为,要做到实用,预测模型必须具备以下两点特征:

可扩展:该预测模型要能进行多项预测,得出所有我们想要的信息,并且适用于不同医院的系统。鉴于医疗保健数据十分复杂,需要进行大量数据处理,这一要求并不容易满足。

精度高:预测结果需能帮助医生关注真正的问题所在,而不是用误报警分散医生的注意力。随着电子病历逐渐普及,我们正尝试用其中的数据建立更加精准的预测模型。

我们联合加州大学旧金山分校、斯坦福大学医学院和芝加哥大学医学院的同事,在《自然》杂志的兄弟期刊——《数字医学》上发表了题为《可扩展且精准的深度学习与电子健康记录》的论文。这篇论文对实现前文所述的两个目标有所帮助。

基于脱敏的电子病历数据,我们用深度学习模型对住院患者进行了广泛预测。值得一提的是,该模型可以直接使用原始数据,无需人工对相关变量进行提取、清洗、整理、转换等一系列费时费力的操作。合作伙伴在将电子病历数据交给我们之前,先对其进行了脱敏处理。我们也采用了最先进的措施保障数据安全,包括逻辑分隔、严格的访问控制,以及静态和传输中的数据加密。

可扩展性

电子病历非常复杂。以体温为例,因测量位置不同(舌头下方、耳膜或额头),其往往具有不同含义。而体温不过是电子病历众多参数中最简单的之一。此外,各个卫生系统都有一套自己定制的电子病例系统,导致各个医院的采集的数据大不相同。用机器学习处理这些数据之前,需要先将其统一格式?;诳诺腇HIR标准,我们构建了一套标准格式。

格式统一后,我们就不需要手动选择或调整相关变量了。进行各项预测时,深度学习模型会自动扫描过去到现在的所有数据点,并分析其中哪些数据对预测是有价值的。由于这一过程涉及数千个数据点,我们不得不开发了一些基于递归神经网络(RNN)和前馈网络的新型深度学习建模方法。

image

我们用时间线来展示患者电子病历中的数据。为方便说明,我们按行显示各种类型的临床数据,其中每个数据片段都用灰点表示,它们被存储在FHIR中。FHIR是一种可供任何医疗机构使用的开放式数据标准。深度学习模型通过从左往右扫描时间表,分析患者从图标开头到现在的住院信息,并据此进行不同类型的预测。

就这样我们设计了一个计算机系统,以可扩展的方式进行预测,而无需为每项预测任务手动制作新的数据集。设置数据只是全部工作中的一部分,保证预测的准确性也十分重要。

准确性

评估准确性的最常见方法是受试者工作曲线下面积,它可以有效评估模型区分特定未来结果患者和非特定未来结果患者的效果。 在这个度量标准中,1.00代表完美,0.50代表不比随机结果更准确,也就是说得分越高代表模型越准确。通过测试,我们的模型在预测患者是否会在医院停留很久时,得分为0.86(传统逻辑回归模型的评分为0.76);预测住院病死率时的得分为0.95(传统模型的得分为0.86);预测出院后意外再住院率时得分为0.77(传统模型得分为0.70)。从得分上看,新方法的准确率提升非常显著。

我们还用这些模型来确定患者接受的治疗,比如医生为发烧、咳嗽的患者开具头孢曲松和强力霉素,该模型就会判定患者正在接受肺炎治疗。必须强调,该模型并不会给患者做诊断,它只是收集患者的相关信号,以及临床医生编写的治疗方案和笔记。因此,它更像是一位优秀的听众而不是主诊医生。

深度学习模型的可解释性是我们工作重点之一。每项预测的“注意图”会展示模型在进行该项预测时认为重要的那些数据点。我将展示一个例子作为概念验证,并将其视为让预测对临床医生产生价值的重要部分。

image

患者入院24小时后,我们使用深度学习进行预测。上图顶部的时间表包含了患者几个月时间的历史数据,我们将最近的数据做了放大显示。模型用红色标识了患者信息图表中用于“解释”其预测的信息。在这个研究案例中,模型标注了临床上有意义的信息片段。

这对患者和临床医生意味着什么?

这项研究成果还处于早期阶段,而且是基于回顾性数据得出的。事实上,证明机器学习可用于改善医疗保健这一假设还有做很多工作要做,本文不过是个开始。医生们正穷于应付各种警报和需求,机器学习模型是否能帮助处理繁琐的管理任务,让他们更专注于护理有需要的患者?我们是否可以帮助患者获得高质量的护理,无论他们在哪里寻求治疗?我们期待着与医生和患者合作,找出这些问题的答案。

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容