Flink 架构

1.Flink 运行时的角色

Flink系统架构中包含了两个角色,分别是JobManager和TaskManager,是一个典型的Master-Slave架构。JobManager相当于是Master,TaskManager相当于是Slave。


Anatomy of a Flink Cluster

Clinet 负责将当前的任务提交给JobManager,提交任务的常用方式:命令提交、web页面提交。当Client提交任务之后,客户端可以断开连接(detached mode),也可以保持连接状态来接收任务的报告(attached mode)。
JobManager和TaskManager启动方式,standalone 集群模式,或者交给资源管理器如YARNMesos)进行管理。


1.1 JobManager(JVM进程)作用

  • 负责整个集群的资源管理与任务管理
  • checkpoint
  • 协调对故障恢复

note: 在一个集群中只能由一个正在工作(active)的JobManager,如果HA集群,那么其他JobManager一定是standby状态
主要包含三个不同的组件:ResourceManager、Dispatcher、JobMaster


1.1.1: ResourceManager 资源管理器

  • 主要负责管理任务管理器(TaskManager)的插槽(slot),TaskManger插槽是Flink中定义的处理资源单元。
  • Flink为不同的环境和资源管理工具提供了不同资源管理器,比如YARN、Mesos、K8s,以及standalone部署。
  • 在standalone 部署中,ResourceManager只能分配可用TaskManager的插槽,而不能自行启动新的TaskManager。
  • 当JobManager申请插槽资源时,ResourceManager会将有空闲插槽的TaskManager分配给JobManager。如果ResourceManager没有足够的插槽来满足JobManager的请求,它还可以向资源提供平台发起会话,以提供启动TaskManager进程的容器。另外,ResourceManager还负责终止空闲的TaskManager,释放计算资源。

1.1.2: Dispatcher 分发器

  • Dispatcher 提供了REST接口去接收flink 作业并且为每一个提交的作业开启一个新的JobMaster
  • Dispatcher 启动了一个Flink WebUI提供有关作业执行的信息。
  • Dispatcher 在架构中可能并不是必需的,这取决于应用提交运行的方式。

1.1.3: JobMaster

  • 一个JobMaster负责管理一个单一的执行 JobGraph。
  • Flink群集中可以同时运行多个作业,每个作业都有自己的JobMaster。

1.2 TaskManager(JVM进程)作用

  • 负责当前节点上的任务运行及当前节点上的资源管理,TaskManager资源通过TaskSlot进行了划分,每个TaskSlot代表的是一份固定资源。例如,具有三个 slots 的 TaskManager 会将其管理的内存资源分成三等份给每个 slot。 划分资源意味着 subtask 之间不会竞争内存资源,但是也意味着它们只拥有固定的资源。注意这里并没有 CPU 隔离,当前 slots 之间只是划分任务的内存资源
  • 负责TaskManager之间的数据交换

note: 至少需要一个TaskManager。TaskManager中资源调度的最小单位是Task Slot。TaskManager中Task Slot的最大数量就是并发处理任务的最大数量,当设置的并行度大于总的Task Slot,程序会报错。请注意,多个operators 算子可以在一个Task Slot中执行

2. 任务提交流程

Flink and YARN interact
  1. Client首先检查所请求的资源(ApplicationMaster的内存和vcore)是否可用,Client向HDFS上传Flink的Jar包和配置
  2. 之后向Yarn ResourceManager提交任务,请求 APPMaster Container
  3. ResourceManager分配Container资源并通知对应的NodeManager启动ApplicationMaster。ApplicationMaster启动后加载Flink的Jar包和配置构建环境,然后启动JobManager
  4. 之后ApplicationMaster向ResourceManager申请资源启动TaskManager,ResourceManager分配Container资源后,由ApplicationMaster通知资源所在节点的NodeManager启动TaskManager,NodeManager加载Flink的Jar包和配置构建环境并启动TaskManager,TaskManager启动后向JobManager发送心跳包,并等待JobManager向其分配任务。

3. Distributed Runtime Environment


3.1 Tasks Parallelism and Operator Chains 并行度和任务链

3.1.1 Tasks Parallelism

  • Flink程序的执行具有并行、分布式的特性。
  • 在执行过程中,一个流(stream)包含一个或多个分区(stream partition),而每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中彼此互不依赖地执行。
  • 一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。一般情况下,一个流程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。
image.png

Stream在算子之间传输数据的形式可以是one-to-one(forwarding)的模式也可以是redistributing的模式,具体是哪一种形式,取决于算子的种类。

  • One-to-one:stream(比如在source和map operator之间)维护着分区以及元素的顺序。那意味着map 算子的子任务看到的元素的个数以及顺序跟source 算子的子任务生产的元素的个数、顺序相同,map、fliter、flatMap等算子都是one-to-one的对应关系。类似于spark中的窄依赖
  • Redistributing:stream(map()跟keyBy/window之间或者keyBy/window跟sink之间)的分区会发生改变。每一个算子的子任务依据所选择的transformation发送数据到不同的目标任务。例如,keyBy() 基于hashCode重分区、broadcast和rebalance会随机重新分区,这些算子都会引起redistribute过程,而redistribute过程就类似于Spark中的shuffle过程。类似于spark中的宽依赖

3.1.2 Operator Chains、

相同并行度的one to one操作,Flink这样相连的算子链接在一起形成一个task,原来的算子成为里面的一部分。将算子链接成task是非常有效的优化:它能减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。链接的行为可以在编程API中进行指定。
要形成算子链 并行度相同、并且是 one-to-one 操作,两个条件缺一不可


image.png

3.2 TaskManger、Slots与 source

  • Flink中每一个worker(TaskManager)都是一个JVM进程,它可能会在独立的线程上执行一个或多个subtask。为了控制一个worker能接收多少个task,worker通过task slot来进行控制(一个worker至少有一个task slot)。
  • 每个task slot表示TaskManager拥有资源的一个固定大小的子集。假如一个TaskManager有三个slot,那么它会将其管理的内存分成三份给各个slot。资源slot化意味着一个subtask将不需要跟来自其他job的subtask竞争被管理的内存,取而代之的是它将拥有一定数量的内存储备。需要注意的是,这里不会涉及到CPU的隔离,slot目前仅仅用来隔离task的受管理的内存。
  • 通过调整task slot的数量,允许用户定义subtask之间如何互相隔离。如果一个TaskManager一个slot,那将意味着每个task group运行在独立的JVM中(该JVM可能是通过一个特定的容器启动的),而一个TaskManager多个slot意味着更多的subtask可以共享同一个JVM。而在同一个JVM进程中的task将共享TCP连接(基于多路复用)和心跳消息。它们也可能共享数据集和数据结构,因此这减少了每个task的负载。


    before slot sharing,

    默认情况下,Flink允许子任务共享插槽,即使它们是不同任务的子任务也是如此,只要它们来自同一作业即可。结果是一个插槽可以容纳整个作业管道。允许此插槽共享有两个主要好处:
    1) Flink集群所需的任务槽与作业中使用的最高并行度恰好一样。无需计算一个程序总共包含多少个任务(并行度各不相同)
    2) 更容易获得更好的资源利用率。通过slot sharing,我们示例中的基本并行度从2增加到6,可以充分利用插槽资源,同时确保沉重的子任务在TaskManager之间公平分配。

slot sharing

举个例子:
Task Slot是静态的概念,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置;而并行度parallelism是动态概念,即TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。
也就是说,假设一共有3个TaskManager,每一个TaskManager中的分配3个TaskSlot,也就是每个TaskManager可以接收3个task,一共9个TaskSlot,如果我们设置parallelism.default=1,即运行程序默认的并行度为1,9个TaskSlot只用了1个,有8个空闲,因此,设置合适的并行度才能提高效率。


并行度优化前
并行度优化后

4.执行图(ExecutionGraph)

由Flink程序直接映射成的数据流图是StreamGraph,也被称为逻辑流图,因为它们表示的是计算逻辑的高级视图。为了执行一个流处理程序,Flink需要将逻辑流图转换为物理数据流图(也叫执行图),详细说明程序的执行方式。
Flink 中的执行图可以分成四层:StreamGraph -> JobGraph -> ExecutionGraph -> 物理执行图

  • StreamGraph:是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。
  • JobGraph:StreamGraph经过优化后生成了 JobGraph,提交给 JobManager 的数据结构。主要的优化为,将多个符合条件的节点 chain 在一起作为一个节点,这样可以减少数据在节点之间流动所需要的序列化/反序列化/传输消耗。
  • ExecutionGraph:JobManager 根据 JobGraph 生成ExecutionGraph。ExecutionGraph是JobGraph的并行化版本,是调度层最核心的数据结构。
  • 物理执行图:JobManager 根据 ExecutionGraph 对 Job 进行调度后,在各个TaskManager 上部署 Task 后形成的“图”,并不是一个具体的数据结构。
    ExecutionGraph

参考 flink 官网 Flink Architecture
flink 官网 Clusters & Deployment YARN
flink 官网 release-1.10 runtime

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352