DCL失效原因与解决方法

转自:https://blog.csdn.net/zhaojw_420/article/details/70477921

DCL单例模式

针对延迟加载法的同步实现所产生的性能低的问题,我们可以采用DCL,即双重检查加锁(Double Check Lock)的方法来避免每次调用getInstance()方法时都同步。实现方式如下:

public class LazySingleton {
    private int someField;

    private static LazySingleton instance;

    private LazySingleton() {
        this.someField = new Random().nextInt(200)+1;         // (1)
    }

    public static LazySingleton getInstance() {
        if (instance == null) {                               // (2)
            synchronized(LazySingleton.class) {               // (3)
                if (instance == null) {                       // (4)
                    instance = new LazySingleton();           // (5)
                }
            }
        }
        return instance;                                      // (6)
    }

    public int getSomeField() {
        return this.someField;                                // (7)
    }
}

优点:资源利用率高,不执行getInstance就不会被实例,多线程下效率高。
缺点:第一次加载时反应不快,由于Java 内存模型一些原因偶尔会失败,在高并发环境下也有一定的缺陷,虽然发生概率很小。

DCL对instance进行了两次null判断,第一层判断主要是为了避免不必要的同步,第二层的判断则是为了在null的情况下创建实例。

这里得到单一的instance实例是没有问题的,问题的关键在于尽管得到了Singleton的正确引用,但是却有可能访问到其成员变量的不正确值。具体来说Singleton.getInstance().getSomeField()有可能返回someField的默认值0。如果程序行为正确的话,这应当是不可能发生的事,因为在构造函数里设置的someField的值不可能为0。为也说明这种情况理论上有可能发生,我们只需要说明语句(1)和语句(7)并不存在happen-before关系。

假设线程Ⅰ是初次调用getInstance()方法,紧接着线程Ⅱ也调用了getInstance()方法和getSomeField()方法,我们要说明的是线程Ⅰ的语句(1)并不happen-before线程Ⅱ的语句(7)。线程Ⅱ在执行getInstance()方法的语句(2)时,由于对instance的访问并没有处于同步块中,因此线程Ⅱ可能观察到也可能观察不到线程Ⅰ在语句(5)时对instance的写入,也就是说instance的值可能为空也可能为非空。我们先假设instance的值非空,也就观察到了线程Ⅰ对instance的写入,这时线程Ⅱ就会执行语句(6)直接返回这个instance的值,然后对这个instance调用getSomeField()方法,该方法也是在没有任何同步情况被调用,因此整个线程Ⅱ的操作都是在没有同步的情况下调用 ,这时我们便无法利用上述8条happen-before规则得到线程Ⅰ的操作和线程Ⅱ的操作之间的任何有效的happen-before关系(主要考虑规则的第2条,但由于线程Ⅱ没有在进入synchronized块,因此不存在lock与unlock锁的问题),这说明线程Ⅰ的语句(1)和线程Ⅱ的语句(7)之间并不存在happen-before关系,这就意味着线程Ⅱ在执行语句(7)完全有可能观测不到线程Ⅰ在语句(1)处对someFiled写入的值,这就是DCL的问题所在。很荒谬,是吧?DCL原本是为了逃避同步,它达到了这个目的,也正是因为如此,它最终受到惩罚,这样的程序存在严重的bug,虽然这种bug被发现的概率绝对比中彩票的概率还要低得多,而且是转瞬即逝,更可怕的是,即使发生了你也不会想到是DCL所引起的。

前面我们说了,线程Ⅱ在执行语句(2)时也有可能观察空值,如果是种情况,那么它需要进入同步块,并执行语句(4)。在语句(4)处线程Ⅱ还能够读到instance的空值吗?不可能。这里因为这时对instance的写和读都是发生在同一个锁确定的同步块中,这时读到的数据是最新的数据。为也加深印象,我再用happen-before规则分析一遍。线程Ⅱ在语句(3)处会执行一个lock操作,而线程Ⅰ在语句(5)后会执行一个unlock操作,这两个操作都是针对同一个锁--Singleton.class,因此根据第2条happen-before规则,线程Ⅰ的unlock操作happen-before线程Ⅱ的lock操作,再利用单线程规则,线程Ⅰ的语句(5) -> 线程Ⅰ的unlock操作,线程Ⅱ的lock操作 -> 线程Ⅱ的语句(4),再根据传递规则,就有线程Ⅰ的语句(5) -> 线程Ⅱ的语句(4),也就是说线程Ⅱ在执行语句(4)时能够观测到线程Ⅰ在语句(5)时对Singleton的写入值。接着对返回的instance调用getSomeField()方法时,我们也能得到线程Ⅰ的语句(1) -> 线程Ⅱ的语句(7)(由于线程Ⅱ有进入synchronized块,根据规则2可得),这表明这时getSomeField能够得到正确的值。但是仅仅是这种情况的正确性并不妨碍DCL的不正确性,一个程序的正确性必须在所有的情况下的行为都是正确的,而不能有时正确,有时不正确。

对DCL的分析也告诉我们一条经验原则:对引用(包括对象引用和数组引用)的非同步访问,即使得到该引用的最新值,却并不能保证也能得到其成员变量(对数组而言就是每个数组元素)的最新值。

解决方案:
1、最简单而且安全的解决方法是使用static内部类的思想,它利用的思想是:一个类直到被使用时才被初始化,而类初始化的过程是非并行的,这些都有JLS保证。
如下述代码:

public class Singleton {

  private Singleton() {}

  private static class InstanceHolder {
   private static final Singleton instance = new Singleton();
  }

  public static Singleton getSingleton() {
    return InstanceHolder.instance;
  }
}

2、另外,可以将instance声明为volatile,即
private volatile static LazySingleton instance;
这样我们便可以得到,线程Ⅰ的语句(5) -> 语线程Ⅱ的句(2),根据单线程规则,线程Ⅰ的语句(1) -> 线程Ⅰ的语句(5)和语线程Ⅱ的句(2) -> 语线程Ⅱ的句(7),再根据传递规则就有线程Ⅰ的语句(1) -> 语线程Ⅱ的句(7),这表示线程Ⅱ能够观察到线程Ⅰ在语句(1)时对someFiled的写入值,程序能够得到正确的行为。

注:
1、volatile屏蔽指令重排序的语义在JDK1.5中才被完全修复,此前的JDK中及时将变量声明为volatile,也仍然不能完全避免重排序所导致的问题(主要是volatile变量前后的代码仍然存在重排序问题),这点也是在JDK1.5之前的Java中无法安全使用DCL来实现单例模式的原因。
2、把volatile写和volatile读这两个操作综合起来看,在读线程B读一个volatile变量后,写线程A在写这个volatile变量之前,所有可见的共享变量的值都将立即变得对读线程B可见。

3、 在java5之前对final字段的同步语义和其它变量没有什么区别,在java5中,final变量一旦在构造函数中设置完成(前提是在构造函数中没有泄露this引用),其它线程必定会看到在构造函数中设置的值。而DCL的问题正好在于看到对象的成员变量的默认值,因此我们可以将LazySingleton的someField变量设置成final,这样在java5中就能够正确运行了。

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容

  • 一、多线程 说明下线程的状态 java中的线程一共有 5 种状态。 NEW:这种情况指的是,通过 New 关键字创...
    Java旅行者阅读 4,673评论 0 44
  • 我曾经写过一篇文章叫《上帝是如何把宙斯挤下神坛的》,那么上帝在成为唯一的神以后是怎么处理来自凡人的祈祷和愿望呢?忙...
    和坚阅读 915评论 11 7
  • 前瞻 mobiscroll插件很强大,可以使用手机pc,下面是简单代码,需要更多配置去官网查看demo,找到对应配...
    呦丶耍脾气阅读 2,043评论 0 0
  • 先来一张一个月早餐汇总图感受一下: ▼ 每一天,先生早出我晚归。所以在过去我坚持早起做早餐的一年多里,都是我一个人...
    七尾阅读 1,118评论 3 17
  • 俄国伟大作家高尔基曾经说过:“我扑在书上,就像饥饿的人扑在面包上?!笨杉?,书的魔力是多麽巨大?。? 小的...
    千柚阅读 157评论 0 0