R语言方差分析


本文首发于公众号:医学和生信笔记,完美观看体验请至公众号查看本文。
医学和生信笔记,专注R语言在临床医学中的使用,R语言数据分析和可视化。


这是R语言和医学统计学的第2篇内容。

主要是用R语言复现课本中的例子。我使用的课本是孙振球主编的《医学统计学》第4版,封面如下:

image.png

使用课本例4-2的数据。

首先是构造数据,本次数据自己从书上摘录。。

trt<-c(rep("group1",30),rep("group2",30),rep("group3",30),rep("group4",30))

weight<-c(3.53,4.59,4.34,2.66,3.59,3.13,3.30,4.04,3.53,3.56,3.85,4.07,1.37,
          3.93,2.33,2.98,4.00,3.55,2.64,2.56,3.50,3.25,2.96,4.30,3.52,3.93,
          4.19,2.96,4.16,2.59,2.42,3.36,4.32,2.34,2.68,2.95,2.36,2.56,2.52,
          2.27,2.98,3.72,2.65,2.22,2.90,1.98,2.63,2.86,2.93,2.17,2.72,1.56,
          3.11,1.81,1.77,2.80,3.57,2.97,4.02,2.31,2.86,2.28,2.39,2.28,2.48,
          2.28,3.48,2.42,2.41,2.66,3.29,2.70,2.66,3.68,2.65,2.66,2.32,2.61,
          3.64,2.58,3.65,3.21,2.23,2.32,2.68,3.04,2.81,3.02,1.97,1.68,0.89,
          1.06,1.08,1.27,1.63,1.89,1.31,2.51,1.88,1.41,3.19,1.92,0.94,2.11,
          2.81,1.98,1.74,2.16,3.37,2.97,1.69,1.19,2.17,2.28,1.72,2.47,1.02,
          2.52,2.10,3.71)

data1<-data.frame(trt,weight)

head(data1)
##      trt weight
## 1 group1   3.53
## 2 group1   4.59
## 3 group1   4.34
## 4 group1   2.66
## 5 group1   3.59
## 6 group1   3.13

数据一共两列,第一列是分组(一共四组),第二列是低密度脂蛋白测量值
先简单看下数据分布

boxplot(weight ~ trt, data = data1)
image.png

进行完全随机设计资料的方差分析:

fit <- aov(weight ~ trt, data = data1)
summary(fit)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## trt           3  32.16  10.719   24.88 1.67e-12 ***
## Residuals   116  49.97   0.431                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果显示组间自由度为3,组内自由度为116,组间离均差平方和为32.16,组内离均差平方和为49.97,组间均方为10.719,组内均方为0.431,F值=24.88,p=1.67e-12,和课本一致。
再简单介绍一下可视化的平均数和可信区间的方法:

library(gplots)
## 
## 载入程辑包:'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
plotmeans(weight~trt,xlab = "treatment",ylab = "weight",
          main="mean plot\nwith95% CI")
image.png

随机区组设计资料的方差分析

使用例4-3的数据。
首先是构造数据,本次数据自己从书上摘录。。

weight <- c(0.82,0.65,0.51,0.73,0.54,0.23,0.43,0.34,0.28,0.41,0.21,
            0.31,0.68,0.43,0.24)
block <- c(rep(c("1","2","3","4","5"),each=3))
group <- c(rep(c("A","B","C"),5))

data4_4 <- data.frame(weight,block,group)

head(data4_4)
##   weight block group
## 1   0.82     1     A
## 2   0.65     1     B
## 3   0.51     1     C
## 4   0.73     2     A
## 5   0.54     2     B
## 6   0.23     2     C

数据一共3列,第一列是小白鼠肉瘤重量,第二列是区组因素(5个区组),第三列是分组(一共3组)
进行完全随机设计资料的方差分析:

fit <- aov(weight ~ block + group,data = data4_4) #随机区组设计方差分析,注意顺序
summary(fit)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## block        4 0.2284 0.05709   5.978 0.01579 * 
## group        2 0.2280 0.11400  11.937 0.00397 **
## Residuals    8 0.0764 0.00955                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果显示区组间自由度为4,分组间自由度为2,组内自由度为8,区组间离均差平方和为0.2284,分组间离均差平方和为0.2280,组内离均差平方和为0.0764,区组间均方为0.05709,分组间均方为0.1140,组内均方为0.00955,区组间F值=5.798,p=0.01579,分组间F值=11.937,p=0.00397,和课本一致。

拉丁方设计方差分析

使用课本例4-5的数据。首先是构造数据,本次数据自己从书上摘录。。

psize <- c(87,75,81,75,84,66,73,81,87,85,64,79,73,73,74,78,73,77,77,68,69,74,76,73,
           64,64,72,76,70,81,75,77,82,61,82,61)
drug <- c("C","B","E","D","A","F","B","A","D","C","F","E","F","E","B","A","D","C",
          "A","F","C","B","E","D","D","C","F","E","B","A","E","D","A","F","C","B")
col_block <- c(rep(1:6,6))
row_block <- c(rep(1:6,each=6))
mydata <- data.frame(psize,drug,col_block,row_block)
mydata$col_block <- factor(mydata$col_block)
mydata$row_block <- factor(mydata$row_block)
str(mydata)
## 'data.frame':    36 obs. of  4 variables:
##  $ psize    : num  87 75 81 75 84 66 73 81 87 85 ...
##  $ drug     : chr  "C" "B" "E" "D" ...
##  $ col_block: Factor w/ 6 levels "1","2","3","4",..: 1 2 3 4 5 6 1 2 3 4 ...
##  $ row_block: Factor w/ 6 levels "1","2","3","4",..: 1 1 1 1 1 1 2 2 2 2 ...

数据一共4列,第一列是皮肤疱疹大小,第二列是不同药物(处理因素,共5种),第三列是列区组因素,第四列是行区组因素。
进行拉丁方设计的方差分析:

fit <- aov(psize ~ drug + row_block + col_block, data = mydata)
summary(fit)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## drug         5  667.1  133.43   3.906 0.0124 *
## row_block    5  250.5   50.09   1.466 0.2447  
## col_block    5   85.5   17.09   0.500 0.7723  
## Residuals   20  683.2   34.16                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果显示行区组间自由度为5,列区组间自由度为5,分组(处理因素)间自由度为5,组内自由度为20;
行区组间离均差平方和为250.5,列区组间离均差平方和为85.5,分组间离均差平方和为667.1,组内离均差平方和为0.0683.2;
行区组间均方为50.09,列区组间均方为17.09,分组间均方为133.43,组内均方为34.16,
行区组间F值=1.466,p=0.2447,列区组间F值=0.5,p=0.7723,分组间F值=3.906,p=0.0124,和课本一致。

两阶段交叉设计资料方差分析

使用课本例4-6的数据。首先是构造数据,本次数据自己从书上摘录。。

contain <- c(760,770,860,855,568,602,780,800,960,958,940,952,635,650,440,450,
             528,530,800,803)
phase <- rep(c("phase_1","phase_2"),10)
type <- c("A","B","B","A","A","B","A","B","B","A","B","A","A","B","B","A",
          "A","B","B","A")
testid <- rep(1:10,each=2)
mydata <- data.frame(testid,phase,type,contain)

str(mydata)
## 'data.frame':    20 obs. of  4 variables:
##  $ testid : int  1 1 2 2 3 3 4 4 5 5 ...
##  $ phase  : chr  "phase_1" "phase_2" "phase_1" "phase_2" ...
##  $ type   : chr  "A" "B" "B" "A" ...
##  $ contain: num  760 770 860 855 568 602 780 800 960 958 ...

mydata$testid <- factor(mydata$testid)

数据一共4列,第一列是受试者id,第二列是不同阶段,第三列是测定方法,第四列是测量值。
简单看下2个阶段情况:

table(mydata$phase,mydata$type)
##          
##           A B
##   phase_1 5 5
##   phase_2 5 5

进行两阶段交叉设计资料方差分析:

fit <- aov(contain~phase+type+testid,mydata)
summary(fit)
##             Df Sum Sq Mean Sq  F value   Pr(>F)    
## phase        1    490     490    9.925   0.0136 *  
## type         1    198     198    4.019   0.0799 .  
## testid       9 551111   61235 1240.195 1.32e-11 ***
## Residuals    8    395      49                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果和课本一致!


本文首发于公众号:医学和生信笔记,完美观看体验请至公众号查看本文。
医学和生信笔记,专注R语言在临床医学中的使用,R语言数据分析和可视化。


?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容