基因集富集分析

基因集富集分析 (Gene Set Enrichment Analysis, GSEA) 的基本思想是使用预定义的基因集,通常来自功能注释或先前实验的结果,将基因按照在两类样本中的差异表达程度排序,然后检验预先设定的基因集合是否在这个排序表的顶端或者底端富集?;蚣细患治黾觳饣蚣隙皇堑ジ龌虻谋泶锉浠?,因此可以包含这些细微的表达变化,预期得到更为理想的结果。

首先从一个叫S的探针集序列开始,假定它是一类编码产生新陈代谢的通路基因集,被定位于相同的细胞生成位段,或者是说有相同GO分类。(译者注:GO是什么?维基百科。) GSEA的目的就在于判断S的成员是随机的分布于L(待测基因探针所排序列)上还是有序的分布于顶部与尾部。我们的预期目的是S探针集能在表型上揭示出后者的分布方式。

下面是具体的三个重要步骤:

  1. 计算富集积分(Enrichment Score,ES)
    我们计算出一个富集积分值(ES),其为S的基因在整个L序列的头部和尾部的超表达量。
    积分值的计算是从L序列的头部开始往尾部走,每当遇到一个基因是在S上就加分,没有则减分。加分的分值大小根据基因表型相关系数大小。富集分值是从没有遇到的时候开始计算直到最大值误差值;而且它还与K-S test统计加权值有关。
  2. 估计ES的显著程度
    我们估计统计学上有意义部分的ES值(名义上的P值),是通过一个经验基础表型方法——置换检验,保存基因表达数据的结构的复杂相关系数。明确地,我们置换不同表型标签下的数据,并且再一次计算ES值,使之形成一个新的ES分布(假分布)。从经验上说,交换之后,ES的P值相对于新的ES值(统计分布)来说若是显著的变化,则有理由说明此基因集是有一定的生物学意义的。
  3. 多重假设检验的调整
    当评估了所有基因探针数据之后,我们会用多重假设检验来评价它们的显著性。我们首先把每一个探针的ES值做根据探针多少的一个标准化,生成一个标准化富集积分值(NES)。之后我们计算出假阳性发现率(FDR),并以此划出假阳性部分对应每一个NES值。FDR是评估一个NES表达值中所发现的假阳性可能性大??;它是由NES的观测值和零分布时比较得出的。

以上几步的实行细节在附录(注:参考文章2中的附录)里面有更详细的说明。(在相关出刊物和PNAS网页上也有支持文件。)

参考文章:

  1. 基因集富集分析方法
  2. 基因探针富集分析:通过基础知识来揭示基因组表达数据的一种方法
最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容