应用统计学与R语言实现笔记(番外篇二)——假设检验更正

今天的文章想从统计学的角度——假设检验,来回顾最近的疫情。同时也是刚好有之前应用统计学与R语言实现笔记假设检验一章中的的错误更正。关于假设检验的内容,详情见下面的博客。

应用统计学与R语言实现学习笔记(六)——假设检验

1 细心的读者与更正

首先感谢简书平台上这位叫“十七颗青彩”的读者,她提出了我之前笔记里的一个错误。具体如图所示。

image

定位到博客里就是第二部分将原假设和备择假设的最后部分。

image

确实是自相矛盾了,下面的表达是错误的。左侧检验和右侧检验是反过来的。目前我在hexo搭建的博客以及CSDN博客均更正(这两个平台支持公式编辑),其余博客平台由于不支持博客平台,这部分内容我推荐看hexo博客或者直接看我的开源项目和电子书。

应用统计学与R语言实现笔记github项目

应用统计学与R语言实现笔记电子书github项目

应用统计学与R语言实现笔记电子书地址

2 p值含义解读、假设检验结论与统计学决策

无论是做线性回归模型,或是做假设检验,还是做方差分析,结果里都会出现的就是p值。比如过去博客里的几张图。

image
image
image

可以说p值是连接概率论与统计学的关键桥梁。p值的学术定义叫做:在一个假设检验问题中,拒绝原假设的最小显著性水平。

这个定义很绕口,我们用之前假设检验的比喻来说一下。原假设是一个暖男A,正在追求的女神叫结论,但是同时还有一个高富帅叫备择假设,也在追求女神结论。那么女神此时在他们俩之间摇摆不定,最后用p值这样一个指标来判定他们俩谁好谁坏,p值达到要求呢,拒绝原假设,接受备择假设。p值没达到要求呢,不拒绝原假设,但也不一定接受原假设(果然舔狗不得好死)。

也就是说通常来说比较常见的结论是如下。

image

当然以上的比喻比较少儿不宜。我们还是正经解释下。

正如前面提到的p值是连接概率论与统计学的关键桥梁。其实p值就是probability value(概率值),因此p值的前提是建立在概率事件的定义上的。区分四个事件,小概率事件就是指很少概率会发生的事,比如我中了600万的彩票,这就是小概率事件。大概率事件就是指很大概率会发生的事件,比如我买的彩票中奖金小于600万,这就是大概率事件,毕竟能中600万的是欧皇中的欧皇呀。此外,还有百分百事件和不可能事件,即一定会发生的事件和一定不会发生的事情,比如太阳每天都会升起,这就是百分百事件;太阳从西边升起,这就是不可能事件。而判定一个事件是小概率事件、大概率事件、百分百事件或者不可能事件的方式就是靠p值。

而在通用的统计学模型里面,小概率事件p值的阈值比较通用的就是0.1,0.05和0.01,也就是说该事件发生概率为0.1,0.05和0.01。而对应的大概率事件就是相反的,发生概率分别为0.9,0.95和0.99。而百分百事件和不可能事件的p值很好理解,一个是1,一个是0。

那么重点问题来了,小概率事件发生概率为0.1或者0.05或者0.01说明什么呢?说明这个事发生的概率是0.1,0.05或者0.01。也就是说明,第一,这个事件发生概率小,但依旧有可能发生;第二,并不是说你做100次实验,就发生10次,5次或者1次这个事件。所以对于假设检验的结论(这里假定p值拒绝原假设),我们通常说的就是我们在p值对应的显著性水平上拒绝原假设,认为备择假设普遍是成立的。也就是说备择假设是个大概率事件,但这边并不意味着原假设完全不会发生。在假设检验通过的前提下,我们只能证实大多数情况下备择假设是普遍成立的,但它仍然不是百分百事件,依旧有可能发生原假设事件。反过来说一件事,当假设检验没通过的前提下,我们无法推翻原假设,但是我们不能说原假设是正确的,也不能说是不正确的,也无法确定具体结论,能下的结论是以当前样本量,我们不足以推翻原假设。

因此针对假设检验而言,p值通不过的情况下,我们往往得不到什么明确结论。而提到这个,联系最近的疫情,突然想起了一个事情。

image

其实对于武汉卫健委这个结论,我只能说相当统计学,但是表达不够清晰。我们可以明显推断出这个结论必定是在当时现有的COVID-19的流行病学样本统计中人传人的假设检验没有通过,因此我们无法确定明确的结论。卫健委的中文表达就变得很拗口,意思模棱两可。在某群中,某位大佬也给出了一个很统计的结论。

image
image

但是我在想的是,即使当时给出这个结论,能不能引起民众的足够重视呢?另外以上言论虽隶属某位大佬,但也是个人意见。我们只是针对一个结论在统计学上用一个术语做表达。因为传染病的传播本身受到生态环境、社会经济各种因素影响,是一个很复杂的过程。我们国家的应对很快,虽然还存在或这或那的不足,但要对打赢这场疫情战争充满信心。这里也想引一下B站一位up主的视频,感兴趣的同学可以看一看。

<iframe src="http://player.bilibili.com/player.html?aid=87676920&cid=150725245&page=1" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true"> </iframe>

3 放弃p值,yes or no?

回到p值本身,当我们无法拒绝原假设时,我们可以发现p值的决策意义就变得较弱了。同时p值在近些年来的研究中也有过被质疑,比如下面的一篇Nature报道。

It’s time to talk about ditching statistical significance

题目翻译过来应该叫做“现在是时候来谈谈是否要放弃统计显著性了”。

谈的是关于一群统计学家对p值的探讨。我想文中一句话很经典:真相不能用一个数字来表示。在报道中提到三位统计学家呼吁科学家放弃统计学意义。作者并不要求放弃P值本身作为统计工具,而是希望终止使用它们作为显着性的任意阈值。

用p值的显著性这样一个数字去代表真相,往往让我们在现实中迷失。我们太容易产生弃真和取伪的错误(这两个概念不清楚的请回看我开头的博客链接)。而对于人的生命而言,统计显著性的意义又如何呢?

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容