2018-05-03 开胃学习Data系列 - ROC

在做决策时,ROC分析能不受成本/效益的影响,给出客观中立的建议。

分类模型(又称分类器,或诊断)是将一个实例映射到一个特定类的过程。
ROC分析的是二元分类模型,也就是输出结果只有两种类别的模型,例如:
(阳性/阴性)(有病/没?。ɡ始抢始ǖ芯堑芯?。

当讯号侦测(或变数测量)的结果是一个连续值时,类与类的边界必须用一个阈值(英语:threshold)来界定。

举例来说,用血压值来检测一个人是否有高血压,测出的血压值是连续的实数(从0~200都有可能),以收缩压140/舒张压90为阈值,阈值以上便诊断为有高血压,阈值未满者诊断为无高血压。二元分类模型的个案预测有四种结局:

真阳性(TP):诊断为有,实际上也有高血压。
伪阳性(FP):诊断为有,实际却没有高血压。
真阴性(TN):诊断为没有,实际上也没有高血压。
伪阴性(FN):诊断为没有,实际却有高血压。

Ture Positive
False Positve
相对比较好记忆

这个东西可以合成 confusion matrix 中文是 混淆矩阵

ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。

  • TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。

  • TPR=TP/(TP+FN)

  • 也就是阳性判断对的概率

  • FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率。

  • FPR=FP/(FP+TN)

  • 也就是阴性判断对的概率

  • 准确度 (ACC, accuracy)

  • ACC = (TP + TN) / (P + N)

  • (真阳性+真阴性) / 总样本数

  • 点与随机猜测线的距离,是预测力的指标:离左上角越近的点预测(诊断)准确率越高。离右下角越近的点,预测越不准。

  • 在A、B、C三者当中,最好的结果是A方法。






好的,接下来说曲线:

同一个二元分类模型的阈值可能设定为高或低,每种阈值的设定会得出不同的FPR和TPR。

将同一模型每个阈值 的 (FPR, TPR) 座标都画在ROC空间里,就成为特定模型的ROC曲线。






一些规律

  1. 当阈值设定为最高时,亦即所有样本都被预测为阴性,没有样本被预测为阳性,此时在伪阳性率 FPR = FP / ( FP + TN ) 算式中的 FP = 0,所以 FPR = 0%。同时在真阳性率(TPR)算式中, TPR = TP / ( TP + FN ) 算式中的 TP = 0,所以 TPR = 0%。当阈值设定为最高时,必得出ROC座标系左下角的点 (0, 0)。

  2. 当阈值设定为最低时,亦即所有样本都被预测为阳性,没有样本被预测为阴性,此时在伪阳性率FPR = FP / ( FP + TN ) 算式中的 TN = 0,所以 FPR = 100%。同时在真阳性率 TPR = TP / ( TP + FN ) 算式中的 FN = 0,所以 TPR=100%。当阈值设定为最低时,必得出ROC座标系右上角的点 (1, 1)。

  3. 因为TP、FP、TN、FN都是累积次数,TN和FN随着阈值调低而减少(或持平),TP和FP随着阈值调低而增加(或持平),所以FPR和TPR皆必随着阈值调低而增加(或持平)。
    → 随着阈值调低,ROC点 往右上(或右/或上)移动,或不动;但绝不会往左下(或左/或下)移动。






ROC下的面积 AUC

ROC曲线下方的面积(英语:Area under the Curve of ROC (AUC ROC)),其意义是:

  • 因为是在1x1的方格里求面积,AUC必在0~1之间。
  • 假设阈值以上是阳性,以下是阴性;
  • 若随机抽取一个阳性样本和一个阴性样本,分类器正确判断阳性样本的值高于阴性样本之机率 = AUC 。
  • 简单说:AUC值越大的分类器,正确率越高。






从AUC判断分类器(预测模型)优劣的标准:

  • AUC = 1,是完美分类器,采用这个预测模型时,存在至少一个阈值能得出完美预测。绝大多数预测的场合,不存在完美分类器。
  • 0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
  • AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
  • AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。
最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容