TCGA突变数据挖掘:把样本整理为突变型或野生型

一从TCGA下载突变信息

这里下载的是maf文件

rm(list=ls())
options(stringsAsFactors = F) 
library(maftools)

# 下载maf文件记录的突变信息。
if(F){
  
  # TCGAmutations包整合了TCGA中全部样本的maf文件
  # devtools::install_github(repo = "PoisonAlien/TCGAmutations")
  library(TCGAmutations)
  tcga_available() #查看可用的数据
  # 载入TCGA-BRCA maf文件
  # Blacklist used for this analysis: pancan_mutation_blacklist.v14.hg19.txt
  tcga_load(study = "GBM") # 默认加载经过校正后的MC3 maf文件,选取自己需要的肿瘤
  tcga_mc3=tcga_gbm_mc3
  save(tcga_mc3, file = "TCGA_GBM_MC3_maf.Rdata")
}

二把样本根据是否突变分为野生型和突变型

rm(list=ls())
options(stringsAsFactors = F) 
library(maftools) 
load( file = "TCGA_DLBC_MC3_maf.Rdata")

d1 <- as.data.frame(tcga_mc3@data)
d1.png

d1.png

可以看到包含了突变基因和对应的样本

d2<-d1[,c("Hugo_Symbol","Tumor_Sample_Barcode")]
class(d2)
a<-as.data.frame(table(d2$Tumor_Sample_Barcode))
a<-as.character(a[,1])

d3<-matrix(rnorm(4803*37),nrow=4803)
d3<-as.data.frame(d3)
colnames(d3)<-a
d3[,38]<-d2[,1]
for(i in 1:37){
for(j in 1:nrow(d2)){
  d3[j,i]<- ifelse(d2[j,2]==a[i],"mutation","wild")
}
}#通过循环得到野生型和突变型
d3<-d3[!duplicated(d3[,38]), ] #删去重复的基因
rownames(d3)<-d3[,38]#把行变为基因名
d3<-d3[,-38]
image.png

最后

感谢jimmy的生信技能树团队!

感谢导师岑洪老师!

感谢健明、孙小洁等生信技能树团队的老师一路以来的指导和鼓励!

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容