原文链接:https://mp.weixin.qq.com/s/HIeA8Cg4-lEodmH9mIFCRQ
—————? 第二天? —————
小灰的思路如下:
第一步,利用迪杰斯特拉算法的距离表,求出从顶点A出发,到其他各个顶点的最短距离:
第二步,继续使用迪杰斯特拉算法,求出从顶点B出发,到其他各个顶点的最短距离。
第三步,从顶点C出发,到各个顶点的最短距离。
第四步,从顶点D出发......
.......
就像这样,一直遍历到顶点G。
这个思路的时间复杂度是多少呢?
假如图中有n个顶点,如果不考虑堆优化,一次迪杰斯特拉算法的时间复杂度是O(n^2)。所以,把每一个顶点都计算一遍,总的时间复杂度是O(n^3)。
举一个栗子:
上图的顶点A和顶点C没有直接相连的边,它们之间的直接距离是无穷大。
如果以B作为“中继顶点”,此时A到C的最短路径就是A-B-C,最短距离是3+2=5。
再举一个栗子:
上图的顶点A和顶点C直接相连,距离是6。但是存在一条“迂回”路径A-B-C,距离是3+2=5<6。
所以,经过中继顶点B,从A到C的最短距离可以是5。
下面我们来看一看Floyd算法的详细步骤。
1.要实现Floyd算法,首先需要构建带权图的邻接矩阵:
在邻接矩阵当中,每一个数字代表着从某个顶点到另一个顶点的直接距离,这个距离是没有涉及到任何中继顶点的。
2.此时假定只允许以顶点A作为中继顶点,那么各顶点之间的距离会变成什么样子呢?
B和C之间的距离原本是无穷大,此时以A为中继,距离缩短为AB距离+AC距离=
5+2=7。
更新对应矩阵元素(橙色区域代表顶点A到其他顶点的临时距离):
3.接下来以顶点A、B作为中继顶点,那么各顶点之间的距离会变成什么样子呢?
A和D之间的距离原本是无穷大,此时以B为中继,距离缩短为AB距离+BD距离=5+1=6。
A和E之间的距离原本是无穷大,此时以B为中继,距离缩短为AB距离+BE距离=5+6=11。
更新对应矩阵元素(橙色区域代表顶点B到其他顶点的临时距离):
4.接下来以顶点A、B、C作为中继顶点,那么各顶点之间的距离会变成什么样子呢?
A和F之间的距离原本是无穷大,此时以C为中继,距离缩短为AC距离+CF距离=2+8=10。
更新对应矩阵元素(橙色区域代表顶点C到其他顶点的临时距离):
以此类推,我们不断引入新的中继顶点,不断刷新矩阵中的临时距离。
最终,当所有顶点都可以作为中继顶点时,我们的距离矩阵更新如下:
此时,矩阵中每一个元素,都对应着某顶点到另一个顶点的最短距离。
为什么这么说呢?让我们回顾一下动态规划的两大要素:
问题的初始状态
问题的状态转移方程式
对于寻找图的所有顶点之间距离的问题,初始状态就是顶点之间的直接距离,也就是邻接矩阵。
而问题的状态转移方程式又是什么呢?
假设新引入的中继顶点是n,那么:
顶点i 到 顶点j 的新距离 = Min(顶点i 到 顶点j 的旧距离,顶点i 到 顶点n 的距离+顶点n 到 顶点j 的距离)
final static int INF = Integer.MAX_VALUE;
public static void floyd(int[][] matrix){
? ? //循环更新矩阵的值
? ? for(int k=0; k<matrix.length; k++){
? ? ? ? for(int i=0; i<matrix.length; i++){
? ? ? ? ? ? for(int j=0; j<matrix.length; j++){
? ? ? ? ? ? ? ? if(matrix[i][k] == INF || matrix[k][j] == INF) {
? ? ? ? ? ? ? ? ? ? continue;
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? matrix[i][j] = Math.min(matrix[i][j], matrix[i][k] + matrix[k][j]);
? ? ? ? ? ? }
? ? ? ? }
? ? }
? ? // 打印floyd最短路径的结果
? ? System.out.printf("最短路径矩阵: \n");
? ? for (int i = 0; i < matrix.length; i++) {
? ? ? ? for (int j = 0; j < matrix.length; j++)
? ? ? ? ? ? System.out.printf("%3d? ", matrix[i][j]);
? ? ? ? System.out.printf("\n");
? ? }
}
public static void main(String[] args) {
? ? int[][] matrix = {
? ? ? ? ? ? {0, 5, 2, INF, INF, INF, INF},
? ? ? ? ? ? {5, 0, INF, 1, 6, INF, INF},
? ? ? ? ? ? {2, INF, 0, 6, INF, 8, INF},
? ? ? ? ? ? {INF, 1, 6, 0, 1, 2, INF},
? ? ? ? ? ? {INF, 6, INF, 1, 0, INF, 7},
? ? ? ? ? ? {INF, INF, 8, 2, INF, 0, 3},
? ? ? ? ? ? {INF, INF, INF, INF, 7, 3, 0}
? ? };
? ? floyd(matrix);
}
【END】
原文链接:https://mp.weixin.qq.com/s/HIeA8Cg4-lEodmH9mIFCRQ
读后感:通常,我们习惯于在已有的知识范围内去寻找问题的解决方法。这个思路一般来说是没错的,但随着科技的进步,今天也许就有比昨天效率更高的方案可以采用。对于快节奏的现代生活来说,效率就等同于效益,你能提供越高效的方案,就能给企业带来越高额的利益。没有了利益,企业就生存不下去,如果你不能为企业的生存和发展做出比别人更高的贡献,企业自然不会选择你。所以,为了生存和发展的需要,我们要每天学习新知识,提升自我价值。