一文读懂 ChIPseq

一、介绍

  • ChIP-seq,测序方法
    • ChIP 指染色质免疫共沉淀技术(Chromatin Immunoprecipitation,ChIP),
    • seq 指的是二代测序方法
  • 作用:识别蛋白质与DNA互相作用情况
  • 原理:染色质免疫共沉淀 + 二代测序
  • 应用:常用于转录因子结合位点和组蛋白修饰位点的研究

二、测序原理

1、使用甲醛将目标蛋白(组蛋白,转录因子等)与染色质交联固定起来

mark

2、从细胞裂解液分离基因组DNA,通过超声打断DNA为一定长度的小片段

mark

3、添加与目标蛋白质特异的抗体,该抗体会与目标蛋白形成免疫结合复合体沉淀,收集这些沉淀

免疫结合复合体 = 靶蛋白 + 抗体 + 靶蛋白结合的DNA

mark

4、去交联,分开蛋白与DNA,纯化DNA即可得到染色质免疫沉淀的DNA样本

mark

5、建立好文库,用测序仪进行测序

详细测序过程可以参考:https://zhuanlan.zhihu.com/p/58708887

mark

三、检测蛋白质与DNA序列的结合峰

1、测序片段匹配到参考基因组

将测序得到的 DNA 片段(sequenced fragments)匹配到参考基因组。

很显然,如果在基因组的某个位置蛋白质结合的概率越大,那么在该位置检测到 DNA 片段堆叠就会越高。反之,如果没有蛋白结合,在该位置就会几乎没有DNA 片段堆叠。为了研究方便,我们将这些DNA片段堆叠叫做峰 (Peak)。

mark
2、检测峰

将覆盖到参考基因组的DNA片段堆叠用柱状图画出来,就会看到峰。

这里需要知道,ChIPseq是利用抗体去结合特异的靶蛋白,进而去沉淀靶蛋白结合的DNA。理论上,只要抗体设计的好,与蛋白质结合的 DNA 的都可以检测到。

我们一般用 ChIPseq 检测转录因子的结合,以及检测组蛋白修饰,二者有着截然不同的峰形:

转录因子结合的特征峰,峰型高,而且窄:

mark

组蛋白修饰结合的特征峰,峰型起伏,而且分布广泛:

mark

当然我们也可以使用,UCSC基因组浏览器显示。

mark
3、提高峰质量

一般在做ChIPseq时,会加入一组空白对照(control),提高峰质量,那么为什么?

  • 一般检测出的峰值会有背景噪音,也就是文库会夹渣一些没有用抗体捕获的DNA片段也被测序了。
  • 开放的染色质区域比封闭的区域更容易断裂
  • 序列在基因组中分布不均
  • 允许我们在比对的控件中与相同区域进行比较
  • 消除 ENCODE 的 Black list的影响

所以会准备空白对照,排除假阳性,对照组有有两种类型:

  • input DNA:不用任何抗体捕获的DNA;
  • mock IP DNA:用不含有抗体的DNA

这样一来,就会让我们检测到的峰更明显更接近真实的生物学特征。

四、影响ChIPseq测序结果的因素

1、免疫共沉淀的影响
  • 高效特异性抗体
  • 起始样本量
  • ChIP DNA 产量
    • 细胞类型
    • 标记或蛋白质丰富程度(组蛋白比TF具有更高的结合覆盖率)
    • 抗体质量

对于组蛋白,使用来自T细胞的20ug染色质DNA作为起始材料,总共会得到15-50ng DNA。

对于TF,通常从2500万个细胞(200ug染色质)中得到5-25ng。

-Subhash Tripathi,ResearchGate

  • 染色质片段
    • 片段大?。河跋霤hIP-seq中的信噪比
    • 因细胞类型而异
    • 偏向启动子区域的片段会在ChIP 和对照样品中的启动子上引起ChIP-seq富集
2、测序的影响
  • Reads 长度
    • 较长的 Reads 和双末端 Reads 可提高匹配率
    • 对于等位基因特异性染色质事件,转座因子研究是必需的
  • 避免分批次
  • 序列输入对照的深度等于或大于IP样本
  • 测序深度
    • 对于转录因子:最小5-10M
    • 对于组蛋白修饰宽谱图则更高:标准为20-40M
测序深度的对组蛋白修饰检测的影响

下面是在不同测序深度下检测人的 H3K4me3 组蛋白修饰ChIP图谱。

绿色框对应于基于SPP宽峰检测方法得到的显著富集区域。

在 5M (500 Reads) 中,未检测到突出显示的富集区域。

mark

同样,我们换成 H3K27me3 组蛋白修饰。

这时在3.5M和10M 的低深度处未检测到突出显示的HOXD11和HOXD-AS1基因座处的富集区域(蓝色框)。
mark

从每个子样本中H3K4me3,H3K36me3和H3K27me3回收的全部数据中获得的显著富集区域的百分比
mark

总的来说,随着测序深度增加,组蛋白修饰检测比例开始会快速增加,随后达到平稳。测序深度饱和点取决于组蛋白修饰和所研究的物种基因组。

3、重复样和重现性
  • 重复多次通常比更高的深度更有效
  • 最好是低深度测序高质量样本,而不是高深度低质量样本

参考:

https://academic.oup.com/nar/article/42/9/e74/1248114

https://en.wikipedia.org/wiki/ChIP_sequencing#/media/File:Chromatin_immunoprecipitation_sequencing.svg

https://www.abcam.com/epigenetics/studying-epigenetics-using-chip

?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容