关联规则分析之规则发现

注,有任何建议或疑问,请加 QQ: 1595218767 ,共同探讨学习
如R/python代码编程作图等方面需要帮忙,欢迎来店咨询 之恒科技, 挥动热情的小爪爪期待你哦

关联规则主要用来发现Pattern,最经典的应用是购物篮分析,当然其他类似案例也可以应用关联规则进行模式发现,如电影推荐/约会网站/药物间的相互副作用/点击流分析等

关联规则分析(非购物篮分析)数据要求:
1.预测变量和目标变量必须都是类别变量或者定序变量
2.如果是数值变量但值分布数量有限(可以当分类变量理解)或者将数值变量分组后也可使用本方案

规则生成基本流程

一共有2步:

  1. 找出频繁项集. n个item,可以产生2^(n- 1)个项集(itemset). 所以,需要指定最小支持度来过滤掉非频繁项集
  2. 找出上步中频繁项集的规则. n个item,总共可以产生3^n - 2^(n+1) + 1条规则. 所以需要指定最小置信度来过滤掉弱规则

案例应用 -- 泰坦尼克号幸存因素分析

数据获取

元数据请移步 qq 群 174225475

load('http://www.rdatamining.com/data/titanic.raw.rdata') 
> str(titanic.raw)
'data.frame':   2201 obs. of  4 variables:
 $ Class   : Factor w/ 4 levels "1st","2nd","3rd",..: 3 3 3 3 3 3 3 3 3 3 ...
 $ Sex     : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
 $ Age     : Factor w/ 2 levels "Adult","Child": 2 2 2 2 2 2 2 2 2 2 ...
 $ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
> head(titanic.raw)
  Class  Sex   Age Survived
1   3rd Male Child       No
2   3rd Male Child       No
3   3rd Male Child       No
4   3rd Male Child       No
5   3rd Male Child       No
6   3rd Male Child       No

关联分析

library(arules)
# find association rules with default settings
rules <- apriori(titanic.raw)
inspect(rules[1:5])
    lhs             rhs         support   confidence lift      count
[1] {}           => {Age=Adult} 0.9504771 0.9504771  1.0000000 2092 
[2] {Class=2nd}  => {Age=Adult} 0.1185825 0.9157895  0.9635051  261 
[3] {Class=1st}  => {Age=Adult} 0.1449341 0.9815385  1.0326798  319 
[4] {Sex=Female} => {Age=Adult} 0.1930940 0.9042553  0.9513700  425 
[5] {Class=3rd}  => {Age=Adult} 0.2848705 0.8881020  0.9343750  627 

规则提取

提取有用规则

只保留结果中包含生存变量的关联规则

# rules with rhs containing “Survived” only
rules <- apriori(titanic.raw, 
                 parameter = list(minlen=2, supp=0.005, conf=0.8), 
                 appearance = list(rhs=c('Survived=No', 'Survived=Yes'),
                                   default='lhs'),
                 control = list(verbose=F))
rules.sorted <- sort(rules, by='lift')
inspect(rules.sorted)

     lhs                                  rhs            support     confidence lift     count
[1]  {Class=2nd,Age=Child}             => {Survived=Yes} 0.010904134 1.0000000  3.095640  24  
[2]  {Class=2nd,Sex=Female,Age=Child}  => {Survived=Yes} 0.005906406 1.0000000  3.095640  13  
[3]  {Class=1st,Sex=Female}            => {Survived=Yes} 0.064061790 0.9724138  3.010243 141  
[4]  {Class=1st,Sex=Female,Age=Adult}  => {Survived=Yes} 0.063607451 0.9722222  3.009650 140  
[5]  {Class=2nd,Sex=Female}            => {Survived=Yes} 0.042253521 0.8773585  2.715986  93  
[6]  {Class=Crew,Sex=Female}           => {Survived=Yes} 0.009086779 0.8695652  2.691861  20  
[7]  {Class=Crew,Sex=Female,Age=Adult} => {Survived=Yes} 0.009086779 0.8695652  2.691861  20  
[8]  {Class=2nd,Sex=Female,Age=Adult}  => {Survived=Yes} 0.036347115 0.8602151  2.662916  80  
[9]  {Class=2nd,Sex=Male,Age=Adult}    => {Survived=No}  0.069968196 0.9166667  1.354083 154  
[10] {Class=2nd,Sex=Male}              => {Survived=No}  0.069968196 0.8603352  1.270871 154  
[11] {Class=3rd,Sex=Male,Age=Adult}    => {Survived=No}  0.175829169 0.8376623  1.237379 387  
[12] {Class=3rd,Sex=Male}              => {Survived=No}  0.191731031 0.8274510  1.222295 422 

总共生成了12条跟人员生存相关的规则

去除冗余的规则
subset.matrix <- is.subset(rules.sorted, rules.sorted) 
subset.matrix[lower.tri(subset.matrix, diag=T)] <- FALSE
redundant <- colSums(subset.matrix) >= 1 
which(redundant)
# remove redundant rules 
rules.pruned <- rules.sorted[!redundant] 
inspect(rules.pruned)
    lhs                               rhs            support     confidence lift     count
[1] {Class=2nd,Age=Child}          => {Survived=Yes} 0.010904134 1.0000000  3.095640  24  
[2] {Class=1st,Sex=Female}         => {Survived=Yes} 0.064061790 0.9724138  3.010243 141  
[3] {Class=2nd,Sex=Female}         => {Survived=Yes} 0.042253521 0.8773585  2.715986  93  
[4] {Class=Crew,Sex=Female}        => {Survived=Yes} 0.009086779 0.8695652  2.691861  20  
[5] {Class=2nd,Sex=Male,Age=Adult} => {Survived=No}  0.069968196 0.9166667  1.354083 154  
[6] {Class=2nd,Sex=Male}           => {Survived=No}  0.069968196 0.8603352  1.270871 154  
[7] {Class=3rd,Sex=Male,Age=Adult} => {Survived=No}  0.175829169 0.8376623  1.237379 387  
[8] {Class=3rd,Sex=Male}           => {Survived=No}  0.191731031 0.8274510  1.222295 422  

上述语句实现了 superset 对 subset的合并,如下图所示

subset3

对于结果的解释,一定要慎重,千万不要盲目下结论。从下面的四条规则看,好像确实像电影中描述的那样:妇女和儿童优先

1 {Class=2nd, Age=Child}              => {Survived=Yes} 0.010904134  1.0000000 3.095640 
2 {Class=1st, Sex=Female}           => {Survived=Yes} 0.064061790  0.9724138 3.010243 
3 {Class=2nd, Sex=Female}          => {Survived=Yes} 0.042253521  0.8773585 2.715986 
4 {Class=Crew, Sex=Female}       => {Survived=Yes} 0.009086779  0.8695652 2.691861

若减小最小支持率和置信度的阈值,则能看到更多的真相

rules <- apriori(titanic.raw, parameter = list(minlen=3, supp=0.002, conf=0.2), 
                 appearance = list(rhs=c('Survived=Yes'), 
                                   lhs=c('Class=1st', 'Class=2nd', 'Class=3rd',
                                          'Age=Child', 'Age=Adult'), default='none'), 
                 control = list(verbose=F)) 
rules.sorted <- sort(rules, by='confidence') 
inspect(rules.sorted)

    lhs                      rhs            support     confidence lift      count
[1] {Class=2nd,Age=Child} => {Survived=Yes} 0.010904134 1.0000000  3.0956399  24  
[2] {Class=1st,Age=Child} => {Survived=Yes} 0.002726034 1.0000000  3.0956399   6  
[3] {Class=1st,Age=Adult} => {Survived=Yes} 0.089504771 0.6175549  1.9117275 197  
[4] {Class=2nd,Age=Adult} => {Survived=Yes} 0.042707860 0.3601533  1.1149048  94  
[5] {Class=3rd,Age=Child} => {Survived=Yes} 0.012267151 0.3417722  1.0580035  27  
[6] {Class=3rd,Age=Adult} => {Survived=Yes} 0.068605179 0.2408293  0.7455209 151 

从规则3和规则5以及之前的规则2和3可以看出泰坦尼克号获得优先权的主要是头等舱、二等舱的妇孺
据统计,头等舱男乘客的生还率比三等舱中儿童的生还率还稍高一点.美国新泽西州州立大学教授,著名社会学家戴维·波普诺研究后毫不客气地修改了曾使英国人颇感'安慰'的'社会规范'(妇女和儿童优先):在泰坦尼克号上实践的社会规范这样表述可能更准确一些:'头等舱和二等舱的妇女和儿童优先'

可视化

# visualize rules
library(arulesViz) 
plot(rules) 
sup-conf1
plot(rules, method=”graph”, control=list(type=”items”)) 
graph1.png
plot(rules, method=”paracoord”, control=list(reorder=TRUE))
paracord1.png

从图中可以清晰地看出:
1.头等舱和二等舱的孩子 生存几率非常大
2.头等舱的 adult 幸存率最大

References:

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容