产生式模型与判别式模型的区别

产生式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于:

  • 对于输入x,类别标签y:
    • 产生式模型估计它们的联合概率分布P(x,y)
    • 判别式模型估计条件概率分布P(y|x)
  • 产生式模型可以根据贝叶斯公式得到判别式模型,但反过来不行。

Andrew Ng在NIPS2001年有一篇专门比较判别模型和产生式模型的文章:
On Discrimitive vs. Generative classifiers: A comparision of logistic regression and naive Bayes

判别式模型常见的主要有:

  • Logistic Regression
  • SVM
  • Traditional Neural Networks
  • Nearest Neighbor
  • CRF
  • Linear Discriminant Analysis
  • Boosting
  • Linear Regression

产生式模型常见的主要有:

  • Gaussians
  • Naive Bayes
  • Mixtures of Multinomials
  • Mixtures of Gaussians
  • Mixtures of Experts
  • HMMs
  • Sigmoidal Belief Networks, Bayesian Networks
  • Markov Random Fields
  • Latent Dirichlet Allocation
最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容

  • 有一天,庭院里出现了一个坑,在桂树的左边,杜鹃的右边,然而我却记不清这个坑里原本是什么。 树?草?花苗?还是说原本...
    蜥蜴盎阅读 199评论 0 1
  • 文/叶伊嘉 刚踏上家门前的那条街,一阵清香扑鼻而来。 我四下寻觅,想要找到香气的来源。 是梧桐花香正浓。 梧桐花开...
    叶伊嘉阅读 385评论 0 3
  • 春望 萬物春回又煦蒸,晴川曆曆望雲澄。風和日麗花千樹,穀暗坡明嶺百層。野陌新途人未識,深階險徑我先登。趨身一上峰高...
    轩若临风阅读 137评论 0 1
  • 没事不要瞎bb,恩,没错,这句话我是用来告诫自己的。 我这个人一遇到烦心事,就喜欢开始瞎bb,进入碎碎念模式,遇到...
    默家少爷阅读 298评论 0 3