介绍
- HBase是一个构建在HDFS上的分布式列存储系统;
- HBase是基于Google BigTable模型开发的,典型的key/value系统;
- HBase是Apache Hadoop生态系统中的重要一员,主要用于海量结构化数据存储;
- 从逻辑上讲,HBase将数据按照表、行和列进行存储。
- 与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
Hbase表的特点
- 大:一个表可以有数十亿行,上百万列;
- 无模式:每行都有一个可排序的主键和任意多的列,列可以根据需要动态的增加,同一张表中不同的行可以有截然不同的列;
- 面向列:面向列(族)的存储和权限控制,列(族)独立检索;
- 稀疏:空(null)列并不占用存储空间,表可以设计的非常稀疏;
- 数据多版本:每个单元中的数据可以有多个版本,默认情况下版本号自动分配,是单元格插入时的时间戳;
- 数据类型单一:Hbase中的数据都是字符串,没有类型。
存储原理
从上面示例表中,我们可以看出,在 HBase 中首先会有 Column Family 的概念,简称为 CF。CF 一般用于将相关的列(Column)组合起来。在物理上 HBase 其实是按 CF 存储的,只是按照 Row-key 将相关 CF 中的列关联起来。
Hbase 中逻辑上数据的排布与物理上排布的关联
从上图我们看到 Row1 到 Row5 的数据分布在两个 CF 中,并且每个 CF 对应一个 HFile。并且逻辑上每一行中的一个单元格数据,对应于 HFile 中的一行,然后当用户按照 Row-key 查询数据的时候,HBase 会遍历两个 HFile,通过相同的 Row-Key 标识,将相关的单元格组织成行返回,这样便有了逻辑上的行数据。
Hbase物理模型
- Table中所有行都按照row key的字典序排列;
- Region按大小分割的,每个表开始只有一个region,随着数据增多,region不断增大,当增大到一个阀值的时候,region就会等分会两个新的region,之后会有越来越多的region;
- HBase中的表是根据row key的值水平分割成所谓的region的。一个region包含表中所有row key位于region的起始键值和结束键值之间的行。集群中负责管理Region的结点叫做Region server。Region server负责数据的读写。每一个Region server大约可以管理1000个region。
- 每个region 有三个主要要素:
它所属于哪张表
它所包含的的第一行(第一个region 没有首行)
它所包含的最后一行(末一个region 没有末行)
版本
我们知道hbase是一个多版本的管理系统,在0.96的版本之前默认每个列簇(cf)是3个version,在hbase 0.96之后每个列是1个version,所谓的version其实就是同一条数据插入不同的时间戳来实现的,在hbase底层的存储是基于时间戳排序的,所以每次我们查到的数据都是最新的版本,除非我们指定了要读取特定的时间范围的数据。
- 时间戳可以自己设置,在put的时候;
- versions是1的时候,只能查到最新的(时间戳最大)的记录;重新插入等于更新。
- versions大于1的时候,按时间戳倒序排列,可以在get的时候查找多个版本的数据。
Master
HMaster负责region的分配,数据库的创建和删除操作。
具体来说,HMaster的职责包括:
调控Region server的工作
- 在集群启动的时候分配region,根据恢复服务或者负载均衡的需要重新分配region。
- 监控集群中的Region server的工作状态。(通过监听zookeeper对于ephemeral node状态的通知)。
管理数据库
-
提供创建,删除或者更新表格的接口。
Region Server
对于一个 Region Server 而言,其包括了多个 Region。Region Server 的作用只是管理表格,以及实现读写操作。Client 直接连接 Region Server,并通信获取 HBase 中的数据。对于 Region 而言,则是真实存放 HBase 数据的地方,也就说 Region 是 HBase 可用性和分布式的基本单位。如果当一个表格很大,并由多个 CF 组成时,那么表的数据将存放在多个 Region 之间,并且在每个 Region 中会关联多个存储的单元(Store)。
Zookeeper
对于 HBase 而言,Zookeeper 的作用是至关重要的。首先 Zookeeper 是作为 HBase Master 的 HA 解决方案。也就是说,是 Zookeeper 保证了至少有一个 HBase Master 处于运行状态。并且 Zookeeper 负责 Region 和 Region Server 的注册。
HBase 的工作原理
在上面的图中,我们需要注意几个我们之前没有提到的概念:Store、MemStore、StoreFile 以及 HFile。带着这几个新的概念,我们完整的梳理下整个 HBase 的工作流程。
首先我们需要知道 HBase 的集群是通过 Zookeeper 来进行机器之前的协调,也就是说 HBase Master 与 Region Server 之间的关系是依赖 Zookeeper 来维护。当一个 Client 需要访问 HBase 集群时,Client 需要先和 Zookeeper 来通信,然后才会找到对应的 Region Server。每一个 Region Server 管理着很多个 Region。对于 HBase 来说,Region 是 HBase 并行化的基本单元。因此,数据也都存储在 Region 中。这里我们需要特别注意,一个 Region 的 一个 Store 只存储一个 table 的 一个column family,并且是该 CF 中的一段(按 Row 的区间分成多个 Region)。Region 所能存储的数据大小是有上限的,当达到该上限时(Threshold),Region 会进行分裂,数据也会分裂到多个 Region 中,这样便可以提高数据的并行化,以及提高数据的容量。
每个 Region 包含着多个 Store 对象。每个 Store 包含一个 MemStore,和一个或多个 storeFile(封装HFile)。MemStore 便是数据在内存中的实体,并且一般都是有序的。当数据向 Region 写入的时候,会先写入 MemStore。当 MemStore 中的数据需要向底层文件系统倾倒(Dump)时(例如 MemStore 中的数据体积到达 MemStore 配置的最大值),Store 便会创建 StoreFile,而 StoreFile 就是对 HFile 一层封装。所以 MemStore 中的数据会最终写入到 HFile 中,也就是磁盘 IO。由于 HBase 底层依靠 HDFS,因此 HFile 都存储在 HDFS 之中。这便是整个 HBase 工作的原理简述。
我们了解了 HBase 大致的工作原理,那么在 HBase 的工作过程中,如何保证数据的可靠性呢?带着这个问题,我们理解下 HLog 的作用。HBase 中的 HLog 机制是 WAL 的一种实现,而 WAL(write-ahead logging)(一般翻译为预写日志)是事务机制中常见的一致性的实现方式。每个 Region Server 中都会有一个 HLog 的实例,Region Server 会将更新操作(如 Put,Delete)先记录到 WAL(也就是 HLog)中,然后将其写入到 Store 的 MemStore,最终 MemStore 会将数据写入到持久化的 HFile 中(MemStore 到达配置的内存阀值)。这样就保证了 HBase 的写的可靠性。如果没有 WAL,当 Region Server 宕掉的时候,MemStore 还没有写入到 HFile,或者 StoreFile 还没有保存,数据就会丢失?;蛐碛械亩琳呋岬P?HFile 本身会不会丢失,这是由 HDFS 来保证的。在 HDFS 中的数据默认会有 3 份。因此这里并不考虑 HFile 本身的可靠性。
如果要用很短的一句话总结 HBase,我们可以认为 HBase 就是一个有序的多维 Map,其中每一个 Row-key 映射了许多数据,这些数据存储在 CF 中的 Column。我们可以用下图来表示这句话。
Region Server的组成
运行在HDFS DataNode上的Region server包含如下几个部分:
WAL:既Write Ahead Log。WAL是HDFS分布式文件系统中的一个文件。WAL用来存储尚未写入永久性存储区中的新数据。WAL也用来在服务器发生故障时进行数据恢复。
Block Cache:Block cache是读缓存。Block cache将经常被读的数据存储在内存中来提高读取数据的效率。当Block cache的空间被占满后,其中被读取频率最低的数据将会被杀出。
MemStore:MemStore是写缓存。其中存储了从WAL中写入但尚未写入硬盘的数据。MemStore中的数据在写入硬盘之前会先进行排序操作。每一个region中的每一个column family对应一个MemStore。
Hfiles:Hfiles存在于硬盘上,根据排序号的键存储数据行。
HBase的第一次读写
HBase中有一个特殊的起目录作用的表格,称为META table。META table中保存集群region的地址信息。ZooKeeper中会保存META table的位置。
当用户第一次想HBase中进行读或写操作时,以下步骤将被执行:
- 客户从ZooKeeper中得到保存META table的Region server的信息。
- 客户向该Region server查询负责管理自己想要访问的row key的所在的region的Region server的地址。客户会缓存这一信息以及META table所在位置的信息。
-
客户与负责其row所在region的Region Server通信,实现对该行的读写操作。
在未来的读写操作中,客户会根据缓存寻找相应的Region server地址。除非该Region server不再可达。这时客户会重新访问META table并更新缓存。这一过程如下图所示:
HBase的写操作步骤
步骤一
当HBase的用户发出一个PUT请求时(也就是HBase的写请求),HBase进行处理的第一步是将数据写入HBase的write-ahead log(WAL)中。
- WAL文件是顺序写入的,也就是所有新添加的数据都被加入WAL文件的末尾。WAL文件存在硬盘上。
- 当server出现问题之后,WAL可以被用来恢复尚未写入HBase中的数据(因为WAL是保存在硬盘上的)。
步骤二
当数据被成功写入WAL后,HBase将数据存入MemStore。这时HBase就会通知用户PUT操作已经成功了。
步骤三
Memstore存在于内存中,其中存储的是按键排好序的待写入硬盘的数据。数据也是按键排好序写入HFile中的。每一个Region中的每一个Column family对应一个Memstore文件。因此对数据的更新也是对应于每一个Column family。
步骤四
当MemStore中积累了足够多的数据之后,整个Memcache中的数据会被一次性写入到HDFS里的一个新的HFile中。因此HDFS中一个Column family可能对应多个HFile。
步骤五
HBase中的键值数据对存储在HFile中。上面已经说过,当MemStore中积累足够多的数据的时候就会将其中的数据整个写入到HDFS中的一个新的HFile中。因为MemStore中的数据已经按照键排好序,所以这是一个顺序写的过程。由于顺序写操作避免了磁盘大量寻址的过程,所以这一操作非常高效。
HBase的读合并(Read Merge)以及读放大(Read amplification)
通过上面的论述,我们已经知道了HBase中对应于某一行数据可能位于多个不同的文件或存储介质中。比如已经存入硬盘的行位于硬盘上的HFile中,新加入或更新的数据位于内存中的MemStore中,最近读取过的数据则位于内存中的Block cache中。所以当我们读取某一行的时候,为了返回相应的行数据,HBase需要根据Block cache,MemStore以及硬盘上的HFile中的数据进行所谓的读合并操作。
- HBase会首先从Block cache(HBase的读缓存)中寻找所需的数据。
- 接下来,HBase会从MemStore中寻找数据。因为作为HBase的写缓存,MemStore中包含了最新版本的数据。
- 如果HBase从Block cache和MemStore中没有找到行所对应的cell所有的数据,系统会接着根据索引和
bloom filter
从相应的HFile中读取目标行的数据。
这里一个需要注意的地方是所谓的读放大效应(Read amplification)。根据前文所说,一个MemStore对应的数据可能存储于多个不同的HFile中(由于多次的flush),因此在进行读操作的时候,HBase可能需要读取多个HFile来获取想要的数据。这会影响HBase的性能表现。
HBase的Compaction
Minor Compaction
HBase会自动选取一些较小的HFile进行合并,并将结果写入几个较大的HFile中。这一过程称为Minor compaction。Minor compaction通过Merge sort的形式将较小的文件合并为较大的文件,从而减少了存储的HFile的数量,提升HBase的性能。
Major Compaction
所谓Major Compaction指的是HBase将对应于某一个Column family的所有HFile重新整理并合并为一个HFile,并在这一过程中删除已经删除或过期的cell,更新现有cell的值。这一操作大大提升读的效率。但是因为Major compaction需要重新整理所有的HFile并写入一个HFile,这一过程包含大量的硬盘I/O操作以及网络数据通信。这一过程也称为写放大(Write amplification)。在Major compaction进行的过程中,当前Region基本是处于不可访问的状态。
Major compaction可以配置在规定的时间自动运行。为避免影响业务,Major compaction一般安排在夜间或周末进行。
需要注意的一点事,Major compaction会将当前Region所服务的所有远程数据下载到本地Region server上。这些远程数据可能由于服务器故障或者负载均衡等原因而存储在于远端服务器上。
Region的分割(Region split)
每一个表格最初都对应于一个region。随着region中数据量的增加,region会被分割成两个子region。每一个子region中存储原来一半的数据。同时Region server会通知HMaster这一分割。出于负载均衡的原因,HMaster可能会将新产生的region分配给其他的Region server管理(这也就导致了Region server服务远端数据的情况的产生)。这一情况会持续至下一次Major compaction之前。如上文所示,Major compaction会将任何不在本地的数据下载至本地。
使用建议
首先,一个 HBase 数据库是否高效,很大程度会和 Row-Key 的设计有关。因此,如何设计 Row-key 是使用 HBase 时,一个非常重要的话题。随着数据访问方式的不同,Row-Key 的设计也会有所不同。不过概括起来的宗旨只有一个,那就是尽可能选择一个 Row-Key,可以使你的数据均匀的分布在集群中。这也很容易理解,因为 HBase 是一个分布式环境,Client 会访问不同 Region Server 获取数据。如果数据排布均匀在不同的多个节点,那么在批量的 Client 便可以从不同的 Region Server 上获取数据,而不是瓶颈在某一个节点,性能自然会有所提升。对于具体的建议我们一般有几条:
- 当客户端需要频繁的写一张表,随机的 RowKey 会获得更好的性能。
- 当客户端需要频繁的读一张表,有序的 RowKey 则会获得更好的性能。
- 对于时间连续的数据(例如 log),有序的 RowKey 会很方便查询一段时间的数据(Scan 操作)。
上面我们谈及了对 Row-Key 的设计,接着我们需要想想是否 Column Family 也会在不同的场景需要不同的设计方案呢。答案是肯定的,不过 CF 跟 Row-key 比较的话,确实也简单一些,但这并不意味着 CF 的设计就是一个琐碎的话题。在 RDBMS(传统关系数据库)系统中,我们知道如果当用户的信息分散在不同的表中,便需要根据一个 Key 进行 Join 操作。而在 HBase 中,我们需要设计 CF 来聚合用户所有相关信息。简单来说,就是需要将数据按类别(或者一个特性)聚合在一个或多个 CF 中。这样,便可以根据 CF 获取这类信息。上面,我们讲解过一个 Region 对应于一个 CF。那么设想,如果在一个表中定义了多个 CF 时,就必然会有多个 Region。当 Client 查询数据时,就不得不查询多个 Region。这样性能自然会有所下降,尤其当 Region 跨机器的时候。因此在大多数的情况下,一个表格不会超过 2 到 3 个 CF,而且很多情况下都是 1 个 CF 就足够了。
hbase 为什么这么快
A:如果快速查询(从磁盘读数据),hbase是根据rowkey查询的,只要能快速的定位rowkey, 就能实现快速的查询,主要是以下因素:
1、hbase是可划分成多个region,你可以简单的理解为关系型数据库的多个分区。
2、键是排好序了的
3、按列存储的
首先,能快速找到行所在的region(分区),假设表有10亿条记录,占空间1TB, 分列成了500个region, 1个region占2个G. 最多读取2G的记录,就能找到对应记录;
其次,是按列存储的,其实是列族,假设分为3个列族,每个列族就是666M, 如果要查询的东西在其中1个列族上,1个列族包含1个或者多个HStoreFile,假设一个HStoreFile是128M, 该列族包含5个HStoreFile在磁盘上. 剩下的在内存中。
再次,是排好序了的,你要的记录有可能在最前面,也有可能在最后面,假设在中间,我们只需遍历2.5个HStoreFile共300M
最后,每个HStoreFile(HFile的封装),是以键值对(key-value)方式存储,只要遍历一个个数据块中的key的位置,并判断符合条件可以了。 一般key是有限的长度,假设跟value是1:19(忽略HFile上其它块),最终只需要15M就可获取的对应的记录,按照磁盘的访问100M/S,只需0.15秒。 加上块缓存机制(LRU原则),会取得更高的效率。
B:实时查询
实时查询,可以认为是从内存中查询,一般响应时间在1秒内。HBase的机制是数据先写入到内存中,当数据量达到一定的量(如128M),再写入磁盘中, 在内存中,是不进行数据的更新或合并操作的,只增加数据,这使得用户的写操作只要进入内存中就可以立即返回,保证了HBase I/O的高性能。
实时查询,即反应根据当前时间的数据,可以认为这些数据始终是在内存的,保证了数据的实时响应。