单细胞数据分析笔记5: 拟时序分析(monocle2)

拟时序(pseudotime)分析,又称细胞轨迹(cell trajectory)分析,根据不同细胞亚群基因表达量随时间的变化情况通过拟时分析可以来推断发育过程细胞的分化轨迹或细胞亚型的演化过程。并非一定要不同时间段做实验的结果,因为细胞本身存在拟时序变化,细胞是有变化的,可以做拟时序分析。

1. \color{green}{monocle2}

1.1 数据预处理

# 安装并加载所需的R包
#BiocManager::install("monocle")
library(monocle)
#载入注释后的数据
load("sub_immune_B.Rdata")

sub_immune_B
## An object of class Seurat 
## 36611 features across 54803 samples within 1 assay 
## Active assay: RNA (36611 features, 2000 variable features)
 ## 3 layers present: counts, data, scale.data
##  4 dimensional reductions calculated: pca, harmony, umap, tsne

# 通过seurat结果导入数据
data <- as(as.matrix(sub_immune_B@assays$RNA@counts), 'sparseMatrix')
pd <- new('AnnotatedDataFrame', data = sub_immune_B@meta.data)
fData <- data.frame(gene_short_name = row.names(data), row.names = row.names(data))
fd <- new('AnnotatedDataFrame', data = fData)

#构建S4对象,CellDataSet
HSMM <- newCellDataSet(data,
                       phenoData = pd,
                       featureData = fd,
                       lowerDetectionLimit = 0.5,
                       expressionFamily = negbinomial.size() # 单细胞稀疏矩阵的话用negbinomial.size(),如果是UMI的话不要标准化;FPKM值用tobit();logFPKM值用gaussianff()
                       ) 

# 估计size factors 和 dispersions
HSMM <- estimateSizeFactors(HSMM)
HSMM <- estimateDispersions(HSMM)

# 过滤低质量细胞
HSMM <- detectGenes(HSMM, min_expr = 3)
print(head(fData(HSMM)))
##             gene_short_name num_cells_expressed use_for_ordering
## MIR1302-2HG     MIR1302-2HG                   0            FALSE
## FAM138A             FAM138A                   0            FALSE
## OR4F5                 OR4F5                   0            FALSE
## AL627309.1       AL627309.1                   0            FALSE
## AL627309.3       AL627309.3                   0            FALSE
## AL627309.2       AL627309.2                   0            FALSE

expressed_genes <- row.names(subset(fData(HSMM),
                                    num_cells_expressed >= 10))

head(pData(HSMM))
                             orig.ident nCount_RNA nFeature_RNA percent.mt RNA_snn_res.0.8 seurat_clusters Sample RNA_snn_res.0.5 celltype Disease Size_Factor num_genes_expressed
## Sample1_GGCACGTCGAAGTCCAT SeuratProject        993          412          0              14              14    N11              18   B_cell  Normal   0.2883241                  20
## Sample1_GCCATGGATGTAGTCTC SeuratProject       1057          564          0               4               4    N11               7   B_cell  Normal   0.3069069                  17
## Sample1_GGAGAACGCTCGAGTGA SeuratProject       1223          632          0               8               8    N11              11   B_cell  Normal   0.3551061                  59
## Sample1_TCGGTCTATGGTCTAAG SeuratProject       1078          328          0               2               2    N11               1   B_cell  Normal   0.3130044                  16
## Sample1_AAGAACATACCGGACGT SeuratProject       1090          436          0              13              13    N11              17   B_cell  Normal   0.3164886                  31
## Sample1_CGTAAGTGCTGATTCAC SeuratProject       1089          572          0               3               3    N11               6   B_cell  Normal   0.3161983                  35

1.2 选择基因

diff_test_res <- differentialGeneTest(HSMM[expressed_genes,],
                                      fullModelFormulaStr = "~ RNA_snn_res.0.8")

# 找出那些在不同细胞类型之间有显著差异表达的基因,以用于细胞排序。 作者:小云爱生信 https://www.bilibili.com/read/cv33990870/ 出处:bilibili
ordering_genes <- row.names (subset(diff_test_res, qval < 0.01)) 
ordering_genes_top <- row.names(diff_test_res)[order(diff_test_res$qval)][1:2000]  #  选择top2000的基因 

HSMM <- setOrderingFilter(HSMM, ordering_genes)
HSMM_top <- setOrderingFilter(HSMM, ordering_genes_top)

plot_ordering_genes(HSMM_top)
monocle-1

★ 这里选择基因的方式有很多,说明文档中建议以下4种选择基因的方式:
1.选择发育差异表达基因
2.选择clusters差异表达基因
3.选择离散程度高的基因
4.自定义发育marker基因

# 降维 & 排序
HSMM_top <- reduceDimension(HSMM_top, max_components = 3,
                            num_dim = 20,
                            method = 'DDRTree') # DDRTree方式

HSMM_top <- orderCells(HSMM_top)

1.3 可视化

1.3.1 基于各种“类型”可视化

colour = c('#C6DADF','#E26EB8','#918FBE','#A2C5A6','#EED784','#D4B796','#F5BDC8','#F0BDD8','#77A1EC','#F8D39C','#F17591','#CCC9E6')

a1 <- plot_cell_trajectory(HSMM_top, color_by = "RNA_snn_res.0.8") + scale_color_manual(values = colour)
a2 <- plot_cell_trajectory(HSMM_top, color_by = "State") + scale_color_manual(values = colour)
a3 <- plot_cell_trajectory(HSMM_top, color_by = "Pseudotime") 
a4 <- plot_cell_trajectory(HSMM_top, color_by = "Disease")  + scale_color_manual(values = colour)

(a1 + a2) / (a3 + a4)
monocle-2

1.3.2 添加“树形图”

p1 <- plot_cell_trajectory(HSMM_top, x = 1, y = 2, color_by = "RNA_snn_res.0.8") + 
  theme(legend.position='none',panel.border = element_blank()) + #去掉第一个的legend
  scale_color_manual(values = colour) 
p2 <- plot_complex_cell_trajectory(HSMM_top, x = 1, y = 3,
                                   color_by = "RNA_snn_res.0.8")+
  scale_color_manual(values = colour) +
  theme(legend.title = element_blank()) 

p1 | p2
monocle-3

1.3.3 细胞密度图和热图

# 沿时间轴的细胞密度图
p_density <- ggplot(df, aes(Pseudotime, colour = RNA_snn_res.0.8, fill = RNA_snn_res.0.8)) +
  geom_density(bw = 0.5, size = 1,alpha = 0.5) + 
  theme_classic2() +
  scale_fill_manual(name = "", values = colour) +
  scale_color_manual(name= "", values = colour )

# 寻找拟时差异基因(qvalue体现基因与拟时的密切程度)绘制热图。
Time_diff <- differentialGeneTest(HSMM_top[ordering_genes_top,], cores = 4,
                                  fullModelFormulaStr = "~sm.ns(Pseudotime)")
Time_diff <-Time_diff[, c(5, 2, 3, 4, 1, 6, 7)] # 把gene放前面,也可以不改
#write.csv(Time_diff, "Time_T_cell_all.csv", row.names = F)

Time_genes <- Time_diff %>% arrange(qval) %>% head(50) %>% pull(gene_short_name) %>% as.character() # 提取Top50gene
p_pseudotime <- plot_pseudotime_heatmap(HSMM_top[Time_genes,], 
                                        cores = 6, 
                                        num_clusters = 3, 
                                        show_rownames = T, return_heatmap = T,
                                        hmcols = colorRampPalette(c("navy", "white", "firebrick3"))(100))

# 提取cluste对应的基因集
clusters <- cutree(p_pseudotime$tree_row, k = 3)
clustering <- data.frame(clusters)
clustering[,1] <- as.character(clustering[,1])
colnames(clustering) <- "Gene_Clusters"
table(clustering)
write.csv(clustering, "clustering_B_cell.csv", row.names = F)

p_density
p_pseudotime
monocle-4

1.3.4 指定基因的可视化

# 直接查看一些基因随细胞状态等的表达变化,选择前4个top基因并将其对象取出
keygenes <- head(Time_genes, 4)
HSMM_subset <- HSMM_top[keygenes,]

# 可视化:以state/cluster/pseudotime进行
p1 <- plot_genes_in_pseudotime(HSMM_subset, color_by = "State")
p2 <- plot_genes_in_pseudotime(HSMM_subset, color_by = "RNA_snn_res.0.8")
p3 <- plot_genes_in_pseudotime(HSMM_subset, color_by = "Pseudotime")
p1|p2|p3

# 也可以自己指定基因
s.genes <-c("SELL","CCR7","IL7R","CD84","CCL5","S100A4")

p1 <- plot_genes_jitter(HSMM_top[s.genes,],grouping = "State", color_by = "State")
p2 <- plot_genes_violin(HSMM_top[s.genes,],grouping = "State", color_by = "State")
p3 <-plot_genes_in_pseudotime(HSMM_top[s.genes,], color_by = "State")
p1|p2|p3
monocle-5

1.3.5 分支点的差异分析

在monocle中的分析中发现,细胞群能从一个轨迹分叉成不同的分支点,Monocle采用分支表达式分析建模,主要是BEAM函数,可以将分叉过程重构为一个分支轨迹,从而分析不同细胞命运下的差异。

# BEAM进行统计分析(此处,分析branch_point = 1这个分支处的细胞命名分叉是如何进行的)
BEAM_res <- BEAM(HSMM_top[Time_genes,], branch_point = 3, cores = 2)

# 对影响分析的基因根据qvalue进行排序
BEAM_res <-BEAM_res[order(BEAM_res$qval),]
BEAM_res <-BEAM_res[,c("gene_short_name", "pval", "qval")]
head(BEAM_res)
##        gene_short_name pval qval
## CD52              CD52    0    0
## LAPTM5          LAPTM5    0    0
## BCAR3            BCAR3    0    0
## NIBAN1          NIBAN1    0    0
## PTPRC            PTPRC    0    0
## REL                REL    0    0

write.csv(BEAM_res, "BEAM_res.csv", row.names = F)

# 绘制与分支相关的基因热图
plot_genes_branched_heatmap(HSMM_top[row.names(subset(BEAM_res,qval < 1e-4)),], branch_point = 3, 
                            num_clusters = 3, cores = 4, use_gene_short_name= T, show_rownames = T)


# 也可选TOP 100基因可视化
BEAM_genes <- top_n(BEAM_res, n = 100, desc(qval)) %>% pull(gene_short_name) %>% as.character() # 这里前面已选择TOP50“Time_genes“
plot_genes_branched_heatmap(HSMM_top[BEAM_genes,], branch_point = 3, num_clusters = 3, show_rownames = T, return_heatmap = T)
ggsave("BEAM_heatmap.pdf",p$ph_res, width = 6.5, height = 10)
monocle-6

2. \color{green}{ggplot 2+ monocle2}

2.1 数据预处理

# 安装并加载所需的R包
library(tidyverse)
library(viridis)
library(tidydr)
library(ggforce)

# 提取散点(细胞信息)
data_df <- t(reducedDimS(HSMM_top)) %>% as.data.frame() %>%
  select_('Component 1' = 1, 'Component 2' = 2) %>%
  rownames_to_column("Cells") %>%
  mutate(pData(HSMM_top)$State,
         pData(HSMM_top)$Pseudotime,
         pData(HSMM_top)$Sample,
         pData(HSMM_top)$Disease,
         pData(HSMM_top)$RNA_snn_res.0.8)

head(data_df)
##                       cells Component_1 Component_2 State Pseudotime Sample Disease Cluster
## 1 Sample1_GGCACGTCGAAGTCCAT  -0.2556758 -0.39954223    12  16.312038    N11  Normal      14
## 2 Sample1_GCCATGGATGTAGTCTC  -6.3751636 -2.72973839     1   9.154760    N11  Normal       4
## 3 Sample1_GGAGAACGCTCGAGTGA  -4.8346884 10.82667623    10  32.885713    N11  Normal       8
## 4 Sample1_TCGGTCTATGGTCTAAG   2.4437216 -0.08049483     6  18.501786    N11  Normal       2
## 5 Sample1_AAGAACATACCGGACGT   0.6226999 -0.58489902     5  17.082317    N11  Normal      13
## 6 Sample1_CGTAAGTGCTGATTCAC -12.6889563 -4.95611584     1   2.298391    N11  Normal       3

# 修改列名
colnames(data_df) <- c("cells","Component_1","Component_2","State",
                       "Pseudotime","Sample","Disease","Cluster")

# 提取轨迹线
reduced_dim_coords <- reducedDimK(HSMM_top)

ica_space_df <- Matrix::t(reduced_dim_coords) %>%
  as.data.frame() %>%
  select_(prin_graph_dim_1 = 1, prin_graph_dim_2 = 2) %>%
  mutate(sample_name = rownames(.), sample_state = rownames(.))

dp_mst <- minSpanningTree(HSMM_top)

edge_df <- dp_mst %>%
  igraph::as_data_frame() %>%
  select_(source = "from", target = "to") %>%
  left_join(ica_space_df %>% select_(source="sample_name", source_prin_graph_dim_1="prin_graph_dim_1", source_prin_graph_dim_2="prin_graph_dim_2"), by = "source") %>%
  left_join(ica_space_df %>% select_(target="sample_name", target_prin_graph_dim_1="prin_graph_dim_1", target_prin_graph_dim_2="prin_graph_dim_2"), by = "target")

head(edge_df)
##   source target source_prin_graph_dim_1 source_prin_graph_dim_2 target_prin_graph_dim_1 target_prin_graph_dim_2
## 1    Y_1  Y_127              -1.9808689              -1.6954309               -1.974843             -1.69475171
## 2    Y_2   Y_27              -9.6308815              -4.2806869               -9.842792             -4.34748024
## 3    Y_2   Y_61              -9.6308815              -4.2806869               -9.418861             -4.21382639
## 4    Y_3  Y_108               3.2228720               0.1019687                3.330707              0.04139265
## 5    Y_3  Y_132               3.2228720               0.1019687                3.114318              0.16312487
## 6    Y_4   Y_59               0.8357722               3.9965879                1.055543              3.74468161

2.2 可视化及美化

# 饼图信息
Cellratio <- prop.table(table(data_df$State, data_df$Disease), margin = 2) # 计算各组样本不同细胞群比例
Cellratio <- as.data.frame(Cellratio)

colnames(Cellratio) <- c('State',"Disease","Freq")

# 可视化
ggplot() +
  geom_point(data = data_df, aes(x = Component_1,
                                 y = Component_2,
                                 color =Pseudotime)) +
  scale_color_viridis() + # 调整颜色
  theme_bw() +
  theme_dr(arrow = grid::arrow(length = unit(0, "inches"))) + # 坐标轴主题修改
  theme(
    panel.background = element_blank(),
    panel.border = element_blank(),
    panel.grid = element_blank(),
    axis.ticks.length = unit(0.8, "lines"),
    axis.ticks = element_blank(),
    axis.line = element_blank(),
    axis.title = element_text(size=15),
  ) +
  geom_segment(aes_string(x = "source_prin_graph_dim_1",
                          y = "source_prin_graph_dim_2",
                          xend = "target_prin_graph_dim_1",
                          yend = "target_prin_graph_dim_2"),
               size=0.75, linetype = "solid", na.rm = TRUE, data= edge_df) + # 添加轨迹线
  geom_arc(arrow = arrow(length = unit(0.15, "inches"), type = "closed", angle = 30),
           aes(x0 = 1, y0 = -3, r = 4, start = -2, end = 0.5),
           lwd = 1.5, color = "grey") +
  geom_arc_bar(data = subset(Cellratio, State == '3'), stat = "pie",
               aes(x0 = 0.1,y0 = 0.5,r0 = 0, r = 0.8, amount = Freq,fill = Disease)) +
  scale_fill_manual(values = c("#3D6590", "#F7D46E","#DC615F"))  # 自定义组别(Disease)颜色
monocle-7
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容