茶桁的AI秘籍 - 人工智能数学基础篇 导言

未标题-2.png

Hi, 大家好。又见面了,我是茶桁。

在之前的一个多月前,我有了一个写一个AI系列的想法,起名为《茶桁的AI秘籍》,简单规划之后,于7月27日发出预告,然后历时二十多天将近一个月,完成了其中《Python篇》的写作。

不知道其中的内容对大家是否有帮助呢?

那么今天我又回来了,根据规划,Python以及相关第三方科学计算库只是我们基础学习的一小部分,而很大一部分基础学习都还未进行。

那么这次,我依然给大家带来的是另外一篇基础部分,「人工智能数学基础篇」。

数学对于计算机编程来说重要性是毋庸置疑的,更何况我们现在不仅仅是编程,而是走在「人工智能」的路上??梢运?,数学应该是最重要的基础。

我们在学习AI的过程当中可能会遇到的一些关于数学方面的一些东西,比如说线性代数里面的矩阵运算,比如说求导,还有一些概率统计,图论方面的一些东西。

如果您觉得自己对于微积分,线性代数,概率统计这些内容自认为掌握的还不错的同学,其实是可以不用看了。如果大家是从文科转过来或者说以前上的数学很多年了也忘的差不多了,那可以来学习一下这套课程。

你将会学到的

? 掌握数据科学领域必备数学知识点 ? 掌握机器学习算法中常用数学
? 通俗理解各项数学公式的作用 ? 掌握数学知识点应用领域与方法
? 掌握高等数学 ? 掌握线性代数
? 掌握概率论 ? 掌握统计分析方法
? 掌握结合Python进行数学操作

课程内容

数学导论

  • 数学导论概述
  • 微积分基?。ǖ际?/li>
  • 线性代数基?。ň卣螅?/li>
  • 概率&统计基础(随机变量)
  • 图论(图的概念)

微积分

  • 函数
  • 极限&连续
  • 导数
  • 微分
  • 链式法则
  • 偏导数
  • 梯度
  • 积分
  • 牛顿-莱布尼兹公式
  • 泰勒展开

线性代数

  • 线性方程组
  • 行列式与克拉默法则
  • 矩阵及其运算
  • 神经网络中的矩阵/向量
  • 矩阵的性质
  • 矩阵与线性变换
  • 线性变换的几何意义
  • 特征值与特征向量
  • NumPy中矩阵的操作

概率&统计

  • 概率是什么
  • 古典概型&几何概型
  • 条件概率&联合概率
  • 期望&方差&协方差
  • 二项分布
  • 高斯分布
  • 中心极限定理
  • 泊松分布
  • 贝叶斯先验分布&后验分布
  • 机器学习分类指标

图论

  • 图的由来
  • 图的构成
  • 图的表示
  • 邻接矩阵
  • 图的种类
  • 最短路径问题
  • Dijkstra算法
  • 最小生成树
  • 图与人工智能

要求

  • 有一定的数学基础学习起来更顺手
  • 熟悉Python将更快上手进行统计分析

说明

本篇是系列《茶桁的AI秘籍》中的《基础数学篇》,旨在帮助同学们快速打下数学基础,通俗讲解其中每一个知识点??纬棠谌萆婕案叩仁?,线性代数,概率论与统计学,同学们在学习过程中应当以理解为出发点并不需要死记每一个公式,快速掌握核心知识点??纬陶陆谀谌萁隙啵慊⊥О此承蜓凹纯?,有基础的同学们可以按照自己的需求来有选择的学习!

此课程面向哪些人:

  • 数据科学方向的同学们;
  • 准备继续学习机器学习,深度学习等方向的同学;
  • 准备面试及就业AI相关方向的同学

对此有需求的小伙伴,赶紧如下方式订阅起来:在简书上直接按篇购买阅读

最后编辑于
?著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事?!?“怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容